光子学报, 2016, 45 (4): 0406003, 网络出版: 2016-05-11  

非二进制低密度奇偶校验码在16QAM光传输系统中的性能

Performance of Non-binary Low Density Parity Check Codes in 16QAM Optical Transmission Systems
作者单位
北京邮电大学 信息光子学和光通信国家重点实验室, 北京 100876
摘要
以16-相正交幅度调制(16QAM)为例,分析比较了伽罗华(GF(2m))域上m=1,2,4时,3种低密度奇偶校验(LDPC)码在16QAM光传输系统中的性能.分析表明,无论在纠错性能还是译码效率方面,4进制LDPC码比16进制LDPC码具有更大优势.为进一步改善高阶调制光传输系统中非二进制低密度奇偶校验(NB-LDPC)码的性能,在16QAM系统下的4进制LDPC码中引入水印位符号.与传统的非二进制LDPC译码方案相比,水印位方案的平均迭代次数显著下降,即引入水印位可以极大地提高NB-LDPC码的译码效率.当误码率BER=10-5时水印位方案可以改善0.1 dB的净编码增益.
Abstract
Taken 16 Quadrature Amplitude Modulation (16QAM) as an example, the performance of three kinds of LDPC codes over Galois fields (GF(2m)) for m=1,2,4 in 16QAM systems was analyzed. The simulation results show that 4-ary LDPC code, rather than 16-ary LDPC, shows significant advantages in both error correction performance and decoding efficiency. Then in order to further improve the performance of NB-LDPC codes in high-order modulation systems, the watermark symbols are introducted into 4-ary LDPC codes in 16QAM systems. Compared with traditional non-binary LDPC decoding, the average iteration number of watermark scheme presents a quite obvious decrease, it means that the decoding efficiency can be greatly improved by using watermark scheme. Moreover a further Net Code Gain (NCG) improvement of about 0.1 dB can be attained when bit error ratio BER=10-5.
参考文献

[1] HUANG Yue-kai, HUANG Ming-fang, IP E, et al. High-capacity fiber field trial using terabit/s all-optical OFDM superchannels with DP-QPSK and DP-8QAM/DP-QPSK modulation[J]. Journal of Lightwave Technology, 2013, 31(4): 546-553.

[2] SEIMETZ M. High-order modulation for optical fiber transmission[M]. Springer: Verlag Berlin Heidelberg, 2009.

[3] MACKAY D, NEAL M. Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1997, 33(6): 457–458.

[4] LI Sha, YU Chong-xiu, KANG Zhe, et al. 160-Gb/s NRZ-DQPSK optical transmission system employing QC-LDPC code[J]. Chinese Optics Letters, 2014, 12(1): 17-21.

[5] DAVEY M. Low-density parity check codes over GF(q)[J]. Communications Letters 1998, 2(6): 165-167.

[6] DAVEY M. Error-correction using low-density parity-check codes[D]. UK: University Cambridge, 1999.

[7] ARABACI M, DJORDJEVIC B, SAUNDERS R, et al. Nonbinary quasi-cyclic LDPC-based coded modulation for beyond 100-Gb/s transmission[J]. Photonics Technology Letters, 2010, 22(6): 434-436.

[8] LEHNIGK-EMDEN T, WEHN N. Complexity evaluation of non-binary Galois field LDPC code decoders[C]. Turbo Codes and Iterative Information Processing, 2010 6th International Symposium on, IEEE, 2010: 53-57.

[9] ARABACI M. Nonbinary-LDPC-coded modulation schemes for high speed optical communication networks[D]. Arizona: University of Arizona, 2010.

[10] SAFARNEJAD L, SADEGHI M R. FFT Based Sum-product algorithm for decoding LDPC lattices[J]. IEEE Communications Letters, 2012, 16(9): 1504-1507.

[11] SPAGNOL C, POPOVICI E, MARNANE W. Hardware implementation of GF(2m) LDPC decoders[J]. IEEE Transactions on Circuits and Systems. 2009, 56(12): 2609-2620.

[12] LIN Jun, YAN Zhi-yuan. An efficient fully parallel decoder architecture for nonbinary LDPC codes[J]. IEEE Transactions on Very Large Scale Integration Systems, 2014, 22(12): 2649-2660.

[13] BI Wei, ZHANG Wen-bo, HE Wen-xue, et al. A modified decoding algorithm involving priori characteristics bits for LDPC[C]. Advanced Infocomm Technology (ICAIT), 2013 6th International Conference on. IEEE, 2013:245-246.

[14] HE Wen-xue, ZHANG Wen-bo, LI Chao, et al. Performance analysis of LDPC code based on watermark scheme in high-speed optical communication system[J]. Chinese Optics Letters, 2015, 13(s1): S10601.

[15] SONG Shu-mei, ZENG Ling-qi, Lin Shu, et al. Algebraic constructions of non-binary quasi-cyclic LDPC codes[J]. IEEE International Symposium on Information Theory, Seattle, 2006, 83-87.

[16] 黄胜, 田方方, 贾雪婷,等. 光通信系统中基于有限域的LDPC码的构造[J]. 光子学报, 2014, S1期(S1):0106003.

    HUANG Sheng, TIAN Fang-fang, JIA Xue-ting, et al. A novel construction method of LDPC codes over finite field in optical communication systems[J]. Acta Photonica Sinica, 2014, S1(s1): 0106003.

[17] DJORDJEVIC B, XU Lei. Large Girth low-density parity-check codes for long-haul high-speed optical communications[C]. Optical Fiber Communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on. IEEE, 2008:1-3.

[18] 常萌, 申敏, 16QAM解调算法及其在HSDPA中的应用[J], 电信交换, 2006, 第2期, 43-48.

[19] 于倩. 高速光传输系统中非二进制LDPC码的编译码研究[D]. 北京邮电大学, 2015.

王黎明, 乔耀军, 张文博. 非二进制低密度奇偶校验码在16QAM光传输系统中的性能[J]. 光子学报, 2016, 45(4): 0406003. WANG Li-ming, QIAO Yao-jun, ZHANG Wen-bo. Performance of Non-binary Low Density Parity Check Codes in 16QAM Optical Transmission Systems[J]. ACTA PHOTONICA SINICA, 2016, 45(4): 0406003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!