强激光与粒子束, 2013, 25 (11): 2965, 网络出版: 2013-11-14   

毫米波与太赫兹波在等离子体中传输特性

Millimeter wave and terahertz wave transmission characteristics in plasma
作者单位
1 电子科技大学 物理电子学院, 成都 610054
2 中国空气动力研究与发展中心 超高速研究所, 四川 绵阳 621000
摘要
针对黑障区高速飞行器测控通信研究需求,在激波管设备上开展了Ka波段毫米波与太赫兹波在等离子体中传输特性的实验研究,获得了不同电子密度和碰撞频率的等离子体中传输衰减特性实验数据。采用辅助差分方程的时域有限差分(ADE-FDTD)方法对实验进行了数值模拟,数值模拟结果和实验结果有很好的一致性。实验结果和数值模拟结果均表明:太赫兹波信号在相同的实验等离子体中传输衰减比毫米波信号小得多,具有更强的穿透等离子体能力;毫米波与太赫兹波信号在等离子体中传输衰减量随着等离子体电子密度的增加而增加,二者的差值也增加;太赫兹波能够作为解决高密度等离子体中电磁波传输的有效技术手段。
Abstract
An experiment was conducted on the shock tube to explore the transmission characteristics of millimeter wave and terahertz wave in high density plasmas, in order to meet the communication requirement of hypersonic vehicles during blackout. The transmission attenuation curves of millimeter wave and terahertz wave in different electron density and collision frequency were obtained. The experiment was also simulated by auxiliary differential equation finite-difference time-domain (ADE-FDTD) methods. The experimental and numerical results show that the transmission attenuation of terahertz wave in the plasma is smaller than that of millimeter wave under the same conditions. The transmission attenuation of terahertz wave in the plasma is enhanced with the increase of electron density. The terahertz wave is a promising alternative to the electromagnetic wave propagation in high density plasmas.
参考文献

[1] Destler W W, DeGrange J E, Fleischmann H H, et al. Experimental studies of high-power microwave reflection, transmission, and absorption from a plasma-covered plane conducting boundary[J]. J Appl Phys, 1991, 69(9):6313-6318.

[2] Swift C T,Hodara H. Effects of the plasma sheath on antenna performance[J]. Space Communications,1967: 351-382.

[3] Lin T C, Sproul L K. Reentry plasma effects on electromagnetic wave propagation[R]. AIAA 95-1942, 1995.

[4] Kim M, Keidar M, Boyd I D. Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma[J]. Journal of Spacecraft and Rockets, 2008, 45(6):1123-1229.

[5] Rudderow W H. An experimental study of the effect of a thin plasma layer on high power microwave transmission[R]. Advanced Technology Center, 1974.

[6] Hartunian R A, Stewart G E, Curtiss T J. Cause and mitigation of radio frequency(RF) blackout during reentry of reusable launch vehicles[R]. AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2007.

[7] Gurel C S, Oncu E. Interation of electromagnetic wave and plasma slab with partially linear and sinu-soidal electron density profile[J]. Progress in Electromagnetics Research Letters, 2009, 12:171-181.

[8] Tang D L, Sun A P, Qiu X M, et al. Interaction of electromagnetic waves with a magnetized nonuniform plasma slab[J]. IEEE Trans on Plasma Science, 2003,31(3):405-410.

[9] 马春光, 赵青, 郑灵, 等. 毫米波在等离子体中衰减特性研究[J]. 物理学报, 2011, 60(5):455-458.(Ma Chunguang, Zhao Qing, Zheng Ling, et al. Study on attenuation characteristic of millimeter wave in the plasma. Acta Physica Sinica, 2011, 60(5):455-458)

[10] 马平, 曾学军, 石安华, 等. 电磁波在等离子体高温气体中传输特性实验研究[J]. 实验流体力学, 2010, 24(5):51-56.(Ma Ping, Zeng Xuejun, Shi Anhua, et al. Experimental investigaiton on electromagnetic wave transmission characteristic in the plasma high temperature gas. Journal of Experiments in the Fluid Mechanics, 2010, 24(5):51-56)

[11] 杨宏伟, 陈如山, 张云. 等离子体的SO-FDTD算法和对电磁波反射系数的计算分析[J]. 物理学报, 2006, 55(7):3464-3469.(Yang Hongwei, Chen Rushan, Zhang Yun. SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma. Acta Physica Sinica, 2006, 55(7):3464-3469)

[12] Liu Jiangfan, Xi Xiaoli, Wan Guobin. Simulation of electromagnetic wave propagation through plasma sheath using the moving-window finite-difference time-domain method[J]. IEEE Trans on Plasma Science, 2011, 39(3):852-855.

[13] 王光强,王建国,李小泽, 等. 0.14 THz高功率太赫兹脉冲的频率测量[J]. 物理学报, 2010, 59(12):8459-8464.(Wang Guangqiang, Wang Jianguo, Li Xiaoze, et al. Frequency measurement of 0.14 THz high-power terahertz pulse. Acta Physica Sinica, 2010, 59(12):8459-8464)

[14] 曹俊诚. 半导体太赫兹源、探测器与应用[M].北京:科学出版社, 2012.(Cao Juncheng. Semiconductor terahertz source, detecor and application. Beijing: Science Press, 2012)

[15] 张金玲,吕英华,张洪欣. 太赫兹通信系统和太赫兹天线技术[J]. 电波科学学报, 2011, 26(s0):39-43.(Zhang Jinlin, Lu Yinhua, Zhang Hongxin. Terahertz communication systems and terahertz antenna technology. Chinese Joural of Radio Science, 2011, 26(s0):39-43)

[16] 王玥, 吴群, 吴昱明. 碳纳米管辐射太赫兹波的理论分析与数值验证[J]. 物理学报, 2011, 60(5): 1-6.(Wang Yue, Wu Qun, Wu Yuming. Theoretical study and numerical verification of terahertz radiation emitted by carbon nanotubes. Acta Physica Sinica, 2011, 60(5):1-6)

[17] Yuan Chengxun, Zhou Zhongxiang, Zhang Jingwen, et al. FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab[J]. IEEE Trans on Plasma Science, 2011, 39(7):1577-1584.

[18] Yuan Chengxun, Zhou Zhongxiang, Xiang Xiaoli, et al. Propagation properties of broadband terahertz pulses through a bounded magnetized thermal plasma[J]. Nuclear Instruments and Methods in Physics Research B, 2011, 269:23-29.

[19] 赵青, 刘述章, 童洪辉. 等离子体技术及应用[M].北京:国防工业出版社, 2005.(Zhao Qing, Liu Shuzhang, Tong Honghui. Plasma technology and its applications. Beijing: National Defense Industry Press, 2005)

[20] Chen Weijun, Shao Wei, Wang Bingzhong. ADE-Laguerre-FDTD method for wave propagation in general dispersive materials[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(5):228-230.

马平, 秦龙, 石安华, 陈伟军, 赵青, 黄洁. 毫米波与太赫兹波在等离子体中传输特性[J]. 强激光与粒子束, 2013, 25(11): 2965. 马平, 秦龙, 石安华, 陈伟军, 赵青, 黄洁. Millimeter wave and terahertz wave transmission characteristics in plasma[J]. High Power Laser and Particle Beams, 2013, 25(11): 2965.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!