光学学报, 2014, 34 (12): 1222004, 网络出版: 2014-10-13   

空间高分辨率宽视场红外光学系统设计

Design of a High Resolution and Wide Field Space Infrared Optical System
作者单位
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
针对高分辨率、宽覆盖面积、全天时海洋目标的红外侦察与搜索需求,设计了一种大口径、长焦距的同轴折反射式中波红外光学系统。其工作轨道高度为1200 km,波段为3.7~4.8 μm,星下点地面像元分辨率优于10 m。通过分析计算确定系统焦距为3000 mm,相对孔径为14。采用镜头前组摆扫方式实现了视场角14.203°,地面覆盖宽度为300 km。利用调焦机构在10 ℃~30 ℃温度范围内主动消热差,在奈奎斯特频率21 lp/mm处全视场调制传递函数(MTF)大于0.39,接近衍射极限。实现了100%冷光阑匹配以抑制系统自身的杂散辐射。设计结果表明,该系统各项性能指标和结构的可实现性均满足要求。
Abstract
According to the requirements on high-resolution, wide-field-of-view, all-time reconnaissance and search for maritime targets, a coaxial catadioptric optical system with medium wave infrared (MWIR) is designed. It operates at the orbit altitude of 1200 km with the wavelength spanning from 3.7 μm to 4.8 μm, and it presents the ground resolution of 10 m at nadir. After detailed analysis and calculation, the focal length of this system is 3000 mm, and the relative aperture is 14. The angle of field reaches 14.203°, and the earth area coverage can reach 300 km with scanning former lens group. A focusing mechanism is developed to correct thermal aberrations of the system from 10 ℃ to 30 ℃. The modulation transfer function (MTF) corresponding to the whole field of view (FOV) is larger than 0.39, which can approach diffraction limit at Nyquist frequency of 21 lp/mm. In order to suppress stray radiations, the optical system is optimized to realize 100% cold-shield-match efficiency. The above results show that the properties and structure feasibility of this optical system closely meet the requirements.
参考文献

[1] 徐一帆, 谭跃进, 贺仁杰, 等. 天基海洋目标监视的系统分析及相关研究综述[J]. 宇航学报, 2010, 31(3): 628-640.

    Xu Yifan, Tan Yuejin, He Renjie, et al.. System analysis and research overview of space-based maritime surveillance [J]. Journal of Astronautics, 2010, 31(3): 628-640.

[2] 黄汉文. 海洋目标天基综合感知技术[J]. 航天电子对抗, 2011, 27(6): 11-13.

    Huang Hanwen. Marine target space-based comprehensive awareness technology [J]. Aerospace Electronic Warfare, 2011, 27(6): 11-13.

[3] 王艳彬. 中波红外变焦光学系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. 1-6.

    Wang Yanbin. Research on Mid-Wave Infrared Zoom System [D]. Harbin: Harbin Institute of Technology, 2010. 1-6.

[4] 刘武, 叶振华. 国外红外光电探测器发展动态[J]. 激光与红外, 2011, 41(4): 365-370.

    Liu Wu, Ye Zhenhua. Status and trends of foreign infrared photodetectors [J]. Laser and Infrared, 2011, 41(4): 365-370.

[5] 范晋祥, 杨建宇. 红外成像探测器技术发展趋势分析[J]. 红外与激光工程, 2012, 41(12): 3145-3153.

    Fan Jinxiang, Yang Jianyu. Development trends of infrared imaging detecting technology [J]. Infrared and Laser Engineering, 2012,41(12): 3145-3153.

[6] 范晋祥, 岳艳军. 军用红外成像系统新概念新体制的发展[J]. 红外与激光工程, 2011, 40(1): 1-6.

    Fan Jinxiang, Yue Yanjun. Development in new concepts and new schemes for military infrared imaging systems [J]. Infrared and Laser Engineering, 2011, 40(1): 1-6.

[7] 王超. 空间红外目标天基监视成像系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. 1-5.

    Wang Chao. Research on Space-Based Surveillance Imaging System of Infrared Space Targets [D]. Harbin: Harbin Institute of Technology, 2013. 1-5.

[8] Nancy S Andreas. Space-based infrared system (SRIRS) system of system [C]. Proceedings of the IEEE Aerospace Conference, 1997, 4: 429-438.

[9] 申志强, 侯宇葵, 刘品雄, 等. 远海对抗中天基系统作用及发展状态分析[J]. 航天电子对抗, 2012, 28(6): 21-23.

    Shen Zhiqiang, Hou Yukui, Liu Pinxiong, et al.. Analysis of functions and developing status of space system in high seas couterwork [J]. Aerospace Electronic Warfare, 2012, 28(6): 21-23.

[10] 谢晋松. 美国天基红外技术的发展分析[J]. 舰船电子工程, 2012, 32(6): 8-10.

    Xie Jinsong. Development analysis of the America space-based infrared [J]. Ship Electronic Engineering, 2012, 32(6): 8-10.

[11] 刘涛, 陈浩文, 黎湘. 天基红外传感器弹道导弹中段目标识别技术分析[J]. 电光与控制, 2009, 16(3): 6-8.

    Liu Tao, Chen Haowen, Li Xiang. Study on midcourse target discrimination based on space-based IR sensor [J]. Electronics Optics and Control, 2009, 16(3): 6-8.

[12] 赖睿. 提高星载红外成像系统空间分辨率的关键技术研究[D]. 西安: 西安电子科技大学, 2007. 2-3.

    Lai Rui. Investigation of Key Techniques for Improving the Spatial Resolution of Space-Borne Infrared Imaging System [D]. Xi′an: Xidian University, 2007. 2-3.

[13] Stephen A Cota, Jabin T Bell, Richard H Boucher, et al.. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems [J]. J Appl Remote Sens, 2010, 4(1): 043535.

[14] 刘洋, 安晓强. 制冷型红外焦平面系统冷反射效应的分析与控制[J]. 光学学报, 2012, 32(2): 0222007.

    Liu Yang, An Xiaoqiang. Analysis and control of narcissus effect of cooling IR focal plane system [J]. Acta Optica Sinica, 2012, 32(2): 0222007.

[15] 刘洋, 安晓强, 王茜, 等. 基于光学离焦量的致冷型长波变焦红外成像系统冷反射效应的分析与控制[J]. 光学学报, 2012, 32(4): 0422003.

    Liu Yang, An Xiaoqiang, Wang Qian, et al.. Analysis and control of narcissus effect of long-wavelength cooling infrared imaging system based on optical defocusing [J]. Acta Optica Sinica, 2012, 32(4): 0422003.

[16] 杨胜杰. 高分辨率制冷型中波广角红外成像系统的光学设计[J]. 光学学报, 2012, 32(8): 0822003.

    Yang Shengjie. Optical design for high resolution cooled mid-wavelength infrared wide-angle imaging system [J]. Acta Optica Sinica, 2012,32(8): 0822003.

[17] 曲贺盟, 张新, 王灵杰, 等. 大相对孔径紧凑型无热化红外光学系统设计[J]. 光学学报, 2012, 32(3): 0322003.

    Qu Hemeng, Zhang Xin, Wang Lingjie, et al.. Design of a low F-number compact athermalizing infrared optical system [J]. Acta Optica Sinica, 2012, 32(3): 0322003.

[18] 虞林瑶, 魏群, 张鑫, 等. 一体式紧凑型折反光学系统设计[J]. 光学 精密工程, 2013, 21(3): 561-566.

    Yu Linyao, Wei Qun, Zhang Xin, et al.. Design of compact integral structure of two-mirror system [J]. Optics and Precision Engineering, 2013, 21(3): 561-566.

[19] 顿雄, 金伟其, 王霞. 大相对孔径超紧凑型红外光学系统设计[J]. 光学学报, 2014, 34(6): 0622002.

    Dun Xiong, Jin Weiqi, Wang Xia. Design of large relative aperture compact infrared optical system [J]. Acta Optica Sinica, 2014, 34(6): 0622002.

[20] 刘琳, 沈为民, 周健康. 中波红外大相对孔径消热差光学系统的设计[J]. 中国激光, 2010, 37(3): 675-679.

    Liu Lin, Shen Weimin, Zhou Jiankang. Design on athermalised middle wavelength infrared optical system with large relative aperture [J]. Chinese J Lasers, 2010, 37(3): 675-679.

[21] J E Heber, T B Parsonage. Characterization of AlBeMet 162 as an optical substrate material [C]. SPIE, 2003, 5179: 56-62.

[22] T Parsonage. New technologies for optical systems utilizing aluminum beryllium [C]. SPIE, 2008, 7018: 70180M.

[23] Michael J Russo. An all-beryllium-aluminum optical system for reconnaissance applications [C]. SPIE, 2009, 7425: 74250H.

[24] Carissa Say, Jack Duich, Chris Huskamp, et al.. Cost effective aluminum beryllium mirrors for critical optics applications [C]. SPIE, 2013, 8837: 883706.

[25] 周子云, 高云国, 邵帅, 等. 采用柔性铰链的快速反射镜设计[J]. 光学 精密工程, 2014, 22(6): 1547-1554.

    Zhou Ziyun, Gao Yunguo, Shao Shuai, et al.. Design of fast steering mirror using flexible hinge [J]. Optics and Precision Engineering, 2014, 22(6): 1547-1554.

[26] 王恒坤, 张国玉, 郭立红, 等. 高精度动载体激光发射系统光束控制反射镜[J]. 光学 精密工程, 2012, 20(12): 336-341.

    Wang Hengkun, Zhang Guoyu, Guo Lihong, et al.. High performance fast steering mirror for beam control of vehicular high energy laser system [J]. Optics and Precision Engineering, 2012, 20(12): 336-341.

[27] 黑沫, 鲁亚飞, 张智勇, 等. 基于动力学模型的快速反射镜设计[J]. 光学 精密工程, 2013, 21(1): 53-61.

    Hei Mo, Lu Yafei, Zhang Zhiyong, et al.. Design of fast steering mirror based on dynamic model [J]. Optics and Precision Engineering, 2013, 21(1): 53-61.

梅贵, 翟岩, 苗健宇, 李广泽, 浦前帅. 空间高分辨率宽视场红外光学系统设计[J]. 光学学报, 2014, 34(12): 1222004. Mei Gui, Zhai Yan, Miao Jianyu, Li Guangze, Pu Qianshuai. Design of a High Resolution and Wide Field Space Infrared Optical System[J]. Acta Optica Sinica, 2014, 34(12): 1222004.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!