红外与毫米波学报, 2013, 32 (5): 408, 网络出版: 2013-10-23   

W波段二次谐波回旋振荡器

A W band second harmonic gyrotron oscillator
作者单位
1 中国科学院电子学研究所, 北京 100190
2 石家庄学院物理学系, 河北 石家庄 050035
3 中国科学院大学, 北京 100049
4 北京大学 信息科学技术学院, 北京 100871
摘要
针对谐波回旋管互作用效率低的问题, 以自洽非线性理论为基本工具, 系统地分析了三个关键因素, 即互作用腔体长度(Q值)、电子注的横纵速度比和工作电压对二次谐波互作用系统性能的影响.研究发现当工作磁场选择在硬激发区时, 通过综合调节电子注的横纵速度比和工作电压能够获得较高的互作用效率.基于自洽非线性理论优化设计了一个W波段二次谐波回旋振荡器, 粒子模拟(PIC)结果显示当电子注速度离散3%, 工作电压37 kV, 电流4 A时, 输出效率达到了39.5%.
Abstract
To solve the problem of low interaction efficiency of harmonic gyrotrons, self-consistent theory was used to investigate the dependence of the interaction efficiency on three critical factors; cavity length (quality factor), electronic beam’s velocity ratio and operating voltage. It was found that high efficiency can be achieved by adjusting beam voltage and velocity ratio when the working magnetic field was located at the hard excitation region. Based on the self-consistent nonlinear theory, a W band second harmonic gyrotron oscillator was optimized. Particle in cell computation showed that the efficiency was up to 39.5% when the beam voltage and current was 37kV and 4A, respectively, with velocity spread of 3%.
参考文献

[1] Chu K R . The electron cyclotron master[J]. Pre. Mod. Phys, 2004, 76(2):489-540.

[2] Nitin Kumar, Udaybir Singh, Singh T P , et al. A review on the applications of high power, high frequency microwave source: gyrotron[J]. J Fusion Energy, 2011, 30:257-276.

[3] Glyavin M.Yu., Luchinin A.G., Golubiatnikov G.YU. , Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field[J]. Physics review letters, 2008, 100:015101.

[4] Vladimir Bratman, Mikhail Glyavin, Toshitaka Idehara, et al. Review of subterahertz and terahertz gyrodevices at IAP RAS and FIR FU[J]. IEEE Trans Plasma Sci, 2009, 37(1):36-43.

[5] Toshitaka Idehara, Kosuke Kosuga, La Agusu, et al. Gyrotron FU CW Ⅶ for 300 MHz and 600 MHz DNP-NMR spectroscopy[J]. J. Infrared Milli Terahz Waves, 2010, 31:763-774.

[6] Idehara T. , Tatsukawa T. , Ogawa I. , et al. Development of a second cyclotron harmonic gyrotron operating at submillimeter wavelengths[J]. Phys. Fluids B, 1992, 4(1):267-273.

[7] Mikhail Yu Glyavin, Alexey G.Luchinin, Vladimir N.Manuilov, et al. Design of a subterahertz, third-harmonic, continuous-wave gyrotrons[J]. IEEE Trans. Plasma Sci, 2008, 36(3):591-596.

[8] Antonio C.Torrezan, Seong-Tae Han, et al. Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance[J]. IEEE Trans. Plasma Sci, 2010, 38(6):1150-1159.

[9] Melissa K Hornstein, Vikram S Bajaj, RobertG Griffin, et al. Second harmonic operation at 460GHz and broadband continuous frequency tuning of a gyrotron oscillator[J]. IEEE Trans Electron Devices, 2005, 52(5):798-807.

[10] E.Borie. Self consistent code for a 150 GHz gyrotron[J]. Int J.Infrared and Millimeter Waves, 1986, 7(12):1863-1879.

[11] DU Chao-Hai, LIU Pu-Kun, Beam-wave coupling strength analysis in a gyrotron traveling-wave tube amplifier[J]. J. Infrared Milli Terahz Waves, 2010, 31(6):714-723.

[12] LIU Pu-Kun, Borie E. , Thumm M. , Mode selection of a moderate power gyrotron operating at the ISM frequency.[J] J. Infrared Millim. Waves (刘濮鲲, E.Borie , M. Thumm.ISM频率中等功率回旋管的选模问题.红外与毫米波学报)2002, 21(4):289-292.

[13] GENG Zhi-Hui , LIU Pu-Kun, SU Yi-Nong, et al. Design of a Ka band 35 kW CW low-voltage harmonic gyrotron[J]. Int J.Infrared and Millimeter Waves, 2010, 31(1):41-47.

[14] DU Chao-Hai, LIU Pu-Kun, XUE Qian-Zhong, et al. Modal mapping between periodic lossy dielectric loaded waveguide and uniform circular waveguide [J]. J. Infrared Millim. Waves (杜朝海, 刘濮鲲, 薛谦忠等.周期损耗介质加载波导与均匀圆波导间的模式映射. 红外与毫米波学报), 2010, 29(4):273-277.

[15] Chao-Hai Du, Qian-Zhong Xue, Pu-Kun Liu, Loss-induced modal transition in a dielectric-coated metal cylindrical waveguide for gyro-traveling -wave-tube applications[J]. IEEE Electron Device Letters, 2008, 29(11): 1256-1258.

[16] CAO Xiao-Qin, LIU Pu-Kun. Self-consistend nonlinear computation of a 28GHz gyrotron at the second harmonic.[J] J. Infrared Millim. Waves (曹晓琴, 刘濮鲲.28GHz二次谐波回旋振荡管的自洽非线性计算.红外与毫米波学报)2005, 24(4):317-320.

[17] DU Chao-Hai, LIU Pu-Kun, Stabilization of the potential multi-steady-state absolute instabilities in a gyrotron traveling-wave amplifier[J]. Phys. Plasmas, 2009, 16(7):073104.

[18] XU Shou-Xi, LIU Pu-Kun. ZHANG Shi-Chang, et al. Studies on 8mm second harmonic gyroklystron amplifier. [J] J. Infrared Millim. Waves (徐寿喜, 刘濮鲲, 张世昌等.8mm二次谐波回旋速调放大器的研究.红外与毫米波学报)2009, 28(1):8-10.

[19] YUAN Xue-Song, LAN Ying, MA Chun-Yan, et al. Theoretical study on a 0.6THz third harmonic gyrotron[J]. Phys. Plasmas, 2011, 18:103115.

史少辉, 刘濮鲲, 杜朝海, 徐寿喜, 耿志辉, 李铮迪, 王虎. W波段二次谐波回旋振荡器[J]. 红外与毫米波学报, 2013, 32(5): 408. SHI Shao-Hui, LIU Pu-Kun, DU Chao-Hai, XU Shou-Xi, GENG Zhi-Hui, LI Zheng-Di, WANG Hu. A W band second harmonic gyrotron oscillator[J]. Journal of Infrared and Millimeter Waves, 2013, 32(5): 408.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!