激光与光电子学进展, 2018, 55 (1): 010901, 网络出版: 2018-03-22   

基于三角形面光源频谱解析解的计算全息图快速生成算法 下载: 597次

Fast Generation Algorithm of Computer-Generated Hologram Based on Triangular Surface Light Source Frequency Spectrum Analytic Solutions
作者单位
昆明理工大学理学院, 云南 昆明 650500
摘要
在空间曲面光源的衍射场计算研究中, 将曲面光源视为微小三角形面光源的集合是一种流行的算法。基于坐标仿射变换导出任意三角形面光源频谱完整的解析表达式, 并给出了特殊频率点的解析表达式, 解决了传统方法中部分三角形频谱丢失的问题, 提高计算全息图重建像的质量。通过严格的理论分析及计算, 准确求解并获得二维、三维任意三角形频谱的解析表达式, 简化了求解三维基元三角形频谱的解析表达式, 得到使用面元分割的三维物体计算全息图的快速计算方法。理论模拟及实验结果验证了算法的正确性。
Abstract
In the study of diffraction field calculation of spatial curved surface light source, it is a popular algorithm that considering the curved surface light source as a set of small triangle surface light sources. The analytic expressions of arbitrary triangular surface light spectrum and special frequency point is derived based on coordinate affine transformation. The problem of partial triangular spectrum loss in the traditional method is solved and the quality of the reconstructed image of the hologram is improved. Through rigorous theoretical analysis and calculation, the analytical expressions of two-dimensional and three-dimensional arbitrary triangular spectrum is solved accurately. The analytical expression of three-dimensional primitive triangular spectrum is simplified. A fast calculation method of 3D objects computing holograms using surface element division is obtained. Theoretical simulation and experimental results verify the validity of this method.
参考文献

[1] Yamaguchi K, Sakamoto Y. Computer generated hologram with characteristics of reflection: reflectance distributions and reflected images[J]. Applied Optics, 2009,48(34): H203-H211.

[2] Kim H, Hahm J, Lee B. Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography[J]. Applied Optics, 2008, 47(19): D117-D127.

[3] Ahrenberg L, Benzie P, Magnor M. Computer generated holograms from three dimensional meshes using an analytic light transport model[J]. Applied Optics, 2008, 47(10): 1567-1574.

[4] Huebschman M, Munjuluri B, Garner H. Dynamic holographic 3-D image projection[J]. Optics Express, 2003, 11(5): 437-445.

[5] Sato K, Sugita A, Morimoto M, et al. Reconstruction of full-color images with a RGB time-sharing holographic display system[C]. SPIE, 2006, 6030: 603004.

[6] 王涌天. 三维呈现[J]. 中国计算机学会通讯, 2013, 9(11): 16-17.

[7] Kim S C, Kim J H, Kim E S. Effective reduction of the novel look-up table memory size based on a relationship between the pixel pitch and reconstruction distance of a computer-generated hologram[J]. Applied Optics, 2011, 50(19): 3375-3382.

[8] Kim S C, Dong X B, Kwon M W, et al. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table[J]. Optics Express, 2013, 21(9): 11568-11584.

[9] Kim S C, Kim E S. Efficient digital hologram computation using difference between frames and compensated principal fringe patterns[C]. SPIE, 2014, 9006: 90061M.

[10] Jia J, Wang Y T, Liu J, et al. Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display[J]. Applied Optics, 2013, 52(7): 1404-1412.

[11] Jia J, Wang Y T, Liu J, et al. Effective CGH calculation algorithm with low memory usage using compressed look-up table based on separation of light modulation variable[C]. Imaging and Applied Optics, 2014: Jtu4A.25.

[12] Matusushima K, Schimmel H, Wyrowski F. Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves[J]. Journal of the Optical Society of America A, 2003, 20(9):1755-1762.

[13] Matusushima K. Computer-generated holograms for three-dimensional surface objects with shade and texture[J]. Applied Optics, 2005, 44(22):4607-4614.

[14] Ahrenberg L, Benzie P, Magnor M, et al. Computer generated holograms form three dimensional meshes using an analytic light transport mode[J]. Applied Optics, 2008, 47(10): 1567-1574.

[15] Matsushima K, Nakahara S. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method[J]. Applied Optics, 2009, 48(34): 54-63.

[16] 李俊昌, 桂进斌, 楼宇丽, 等. 漫反射三维物体计算全息图算法研究[J]. 激光与光电子进展, 2013, 50(2): 020903.

    Li J C, Gui J B, Lou Y L, et al. Study of creation algorithm of computer-generated hologram of diffuse reflection 3D object[J]. Laster & Optoelectronics Progress, 2013, 50(2): 020903.

[17] 张亚萍, 张建强, 陈伟, 等. 基于三角模型的计算全息快速算法[J]. 中国激光, 2013, 40(7): 0709001.

    Zhang Y P, Zhang J Q, Chen W, et al. Fast computer generated hologram algorithm of triangle mesh models[J]. Chinese Journal of Lasers, 2013, 40(7): 0709001.

[18] Pan Y J, Wang Y T, Liu J, et al. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display[J]. Applied Optics, 2013, 52(1): A290-A299.

[19] Pan Y J, Wang Y T, Liu J, et al. Analytical brightness compensation algorithm for traditional polygon-based method in computer-generated holography[J]. Applied Optics, 2013, 52(18): 4391-4399.

[20] Pan Y J, Wang Y T, Liu J, et al. Improve full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation[J]. Applied Optics, 2014, 53(7): 1354-1362.

[21] Sakata H, Sakamoto Y. Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space[J]. Applied Optics, 2009, 48(34): H212-H221.

刘超, 桂进斌, 李俊昌, 宋庆和, 楼宇丽, 刘志强. 基于三角形面光源频谱解析解的计算全息图快速生成算法[J]. 激光与光电子学进展, 2018, 55(1): 010901. Liu Chao, Gui Jinbin, Li Junchang, Song Qinghe, Lou Yuli, Liu Zhiqiang. Fast Generation Algorithm of Computer-Generated Hologram Based on Triangular Surface Light Source Frequency Spectrum Analytic Solutions[J]. Laser & Optoelectronics Progress, 2018, 55(1): 010901.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!