红外与毫米波学报, 2019, 38 (4): 04412, 网络出版: 2019-10-14   

1.55 μm AlGaInAs/InP小发散角量子阱激光器的仿真和制备

Simulation and fabrication of 1.55 μm AlGaInAs/InP quantum well lasers with low beam divergence
作者单位
1 中国科学院半导体研究所 集成光电子国家重点实验室,北京 100083
2 中国科学院大学 材料科学与光电工程中心,北京 100083
摘要
理论仿真和实验制备了AlGaInAs/InP材料1.55 μm小发散角量子阱激光器.为了扩展近场光场并减小内损耗,将一个非对称模式扩展层插入到外延结构的下盖层当中.仿真结果表明,该模式扩展层除了少量增加激光器阈值电流以外,在不影响激光器其它性能的情况下能显著减小激光器的垂直远场发散角.实验结果与理论仿真高度吻合.成功制备出脊宽4 μm,腔长1000 μm的脊波导小发散角激光器.在端面未镀膜的情况下,该激光器阈值电流为56 mA,输出功率为17.38 mw@120 mA,斜率效率可以达到0.272 W/A.实验测得垂直远场发散角为29.6°,相比较传统激光器减小了约35.3%.
Abstract
1.55 μm AlGaInAs/InP quantum well lasers with low beam divergence have been theoretically designed and experimentally fabricated. An asymmetrical mode expand layer (MEL) was inserted in lower cladding to expand near field intensity distribution and decrease internal loss. Simulation results showed that the use of MEL didn’t influence the laser performance negatively but dramatically decreased the vertical beam divergence at the cost of slightly increase of threshold current. And the experiment results showed high agreement to it. With a 4 μm-wide and 1000 μm-long ridge waveguide laser with MEL, the threshold current and output power of single facet without coating is 56 mA and 17.38 mw@120 mA, and the slope efficiency is 0.272 W/A. The vertical beam divergence is 29.6° and decreases about 35.3% compared to that of typical lasers.
参考文献

[1] Gordeev N Y, Payusov A S, Shernyakov Y M, et al. Transverse single-mode edge-emitting lasers based on coupled waveguides[J]. Optics Letters, 2015, 40(9):2150-2.

[2] Pietrzak A, Wenzel H, Crump P, et al. 1060-nm ridge waveguide lasers based on extremely wide waveguides for 1.3 W continuous-wave emission into a single mode with FWHM divergence angle of 9×6[J]. IEEE Journal of Quantum Electronics, 2012, 48(5):568-575.

[3] Qiu B, Mcdougall S D, Liu X, et al. Design and fabrication of low beam divergence and high kink-free power lasers[J]. IEEE Journal of Quantum Electronics, 2005, 41(9):1124-1130.

[4] Wenzel H, Bugge F, Erbert G, et al. High-power diode lasers with small vertical beam divergence emitting at 808 nm[J]. Electronics Letters, 2001, 37(16):1024.

[5] Hung C T, Lu T C. 830-nm AlGaAs-InGaAs graded index double barrier separate confinement heterostructures laser diodes with improved temperature and divergence characteristics[J]. IEEE Journal of Quantum Electronics, 2013, 49(1):127-132.

[6] Yang G, Smith G M, Davis M K, et al. High-performance 980 nm ridge waveguide lasers with a nearly circular beam[J]. IEEE Photonics Technology Letters, 2004, 16(4):981-983.

[7] Crump P, Pietrzak A, Bugge F, et al. 975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers[J]. Applied Physics Letters, 2010, 96(13):131110.

[8] Pietrzak A, Crump P, Wenzel H, et al. Combination of low-index quantum barrier and super large optical cavity designs for ultranarrow vertical far-fields from high-power broad-area lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1715-1722.

[9] Yu N, Fan J, Wang Q J, et al. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nature Photonics, 2008, 2(9):564-570.

[10] Wang L, Tong C, Tian S, et al. High-power ultralow divergence edge-emitting diode laser with circular beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 343-351.

[11] Miah M J, Kalosha V P, Bimberg D, et al. Astigmatism-free high-brightness 1060 nm edge-emitting lasers with narrow circular beam profile[J]. Optics Express, 2016, 24(26):30514-30522.

[12] Liu L, Qu H, Liu Y, et al. Design and analysis of laser diodes based on the longitudinal photonic band crystal concept for high power and narrow vertical divergence[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 440-446.

[13] Zhao S, Qi A, Qu H, et al. Effect of ridge structure on electro-optical characteristics of ridge-waveguide lasers with low vertical divergence based on photonic crystal structure[C]//AOPC 2017: Laser Components, Systems, and Applications. International Society for Optics and Photonics, 2017, 10457: 104572B.

[14] Jeon H, Verdiell J M, Ziari M, et al. High-power low-divergence semiconductor lasers for GaAs-based 980-nm and InP-based 1 550-nm applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 3(6): 1344-1350.

[15] Hou L P, Haji M, Akbar J, et al. 160-GHz 1.55-μm colliding-pulse mode-locked algainas/inp laser with high power and low divergence angle[J]. IEEE Photon. Technol. Lett., 2012, 24(12): 1057-1059.

[16] Hou L, Haji M, Akbar J, et al. Low divergence angle and low jitter 40 GHz AlGaInAs/InP 1.55 μm mode-locked lasers[J]. Optics Letters, 2011, 36(6): 966-968.

[17] Liou B T, Yen S H, Yao M W, et al. Numerical study for 1.55-μm AlGaInAs/InP semiconductor lasers[C]//Optoelectronic Devices: Physics, Fabrication, and Application III. International Society for Optics and Photonics, 2006, 6368: 636814.

[18] Hou L, Stolarz P, Javaloyes J, et al. Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs-InP 1.55-$\mu {\hbox {m}} $ strained quantum-well laser[J]. IEEE Photonics Technology Letters, 2009, 21(23): 1731-1733.

[19] Garbuzov D, Xu L, Forrest S R, et al. 1.5/spl mu/m wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power[J]. Electronics Letters, 1996, 32(18): 1717.

[20] Joindot I, Beylat J L. Intervalence band absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 155 mu m semiconductor lasers[J]. Electronics Letters, 1993, 29(7): 604-606.

[21] Minch J, Park S H, Keating T, et al. Theory and experiment of In Ga As P and In Ga Al As long-wavelength strained quantum-well lasers[J]. IEEE J. Quantum Electron, 1999, 35(5): 771-782.

[22] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.

[23] Selmic S R, Chou T M, Sih J P, et al. Design and characterization of 1.3-/spl mu/m AlGaInAs-InP multiple-quantum-well lasers[J]. IEEE Journal of selected topics in Quantum Electronics, 2001, 7(2): 340-349.

[24] Ivanov A V, Kurnosov V D, Kurnosov K V, et al. Refractive indices of solid AlGaInAs solutions[J]. Quantum Electronics, 2007, 37(6): 545.

[25] Liu D C, Lee C P, Tsai C M, et al. Role of cladding layer thicknesses on strained‐layer InGaAs/GaAs single and multiple quantum well lasers[J]. Journal of Applied Physics, 1993, 73(12): 8027-8034.

[26] Yang G W, Xu J Y, Xu Z T, et al. Theoretical investigation on quantum well lasers with extremely low vertical beam divergence and low threshold current[J]. Journal of applied physics, 1998, 83(1): 8-14.

[27] Yen S T, Lee C P. Theoretical investigation on semiconductor lasers with passive waveguides[J]. IEEE journal of quantum electronics, 1996, 32(1): 4-13.

熊迪, 郭文涛, 郭小峰, 刘海峰, 廖文渊, 刘维华, 张杨杰, 曹营春, 谭满清. 1.55 μm AlGaInAs/InP小发散角量子阱激光器的仿真和制备[J]. 红外与毫米波学报, 2019, 38(4): 04412. XIONG Di, GUO Wen-Tao, GUO Xiao-Feng, LIU Hai-Feng, LIAO Wen-Yuan, LIU Wei-Hua, ZHANG Yang-Jie, CAO Ying-Chun, TAN Man-Qing. Simulation and fabrication of 1.55 μm AlGaInAs/InP quantum well lasers with low beam divergence[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04412.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!