强激光与粒子束, 2013, 25 (6): 1483, 网络出版: 2013-04-23   

0.14 THz瓦量级折叠波导行波管设计

Design of 0.14 THz watt-level folded waveguide traveling wave tube
陈樟 1,2,*王亚军 1,2
作者单位
1 中国工程物理研究院 电子工程研究所, 四川 绵阳 621900
2 中国工程物理研究院 太赫兹研究中心, 四川 绵阳 621900
摘要
在本课题组此前采用显式方法设计0.14 THz宽带折叠波导慢波结构的基础上,设计了一种0.14 THz瓦量级输出折叠波导行波管。通过CST MWS软件分析结构尺寸对冷测特性的影响规律来确定一组慢波结构参数,然后对电子枪、永磁聚焦系统、输入输出结构、衰减结构及收集极系统进行设计,最后经过CST PS软件进行整管热测特性仿真模拟。此过程不断迭代,最终找到一组结构参数满足频率在0.14 THz、输入功率为20 mW时,折叠波导行波管输出功率大于6 W。为了验证设计的电子光学系统的正确性,加工装配了一根流通管,并进行了流通率测试,测得流通率大于80%。
Abstract
Based on our previous work which introduced an explicit method to design the slow wave circuit of a 0.14 THz broadband folded waveguide traveling wave tube, a 0.14 THz watt-level folded waveguide traveling wave tube has been designed, with a set of slow wave structure parameters determined by analyzing the influence of structure dimensions on its cold characteristics using CST MWS. Over 6 W output power is attained with 3D PIC method by means of CST PS, at around 0.14 THz, as the input power is 20 mW. A transmission tube was fabricated in order to verify the designed electron-optical system. Measurement results show an over 80% electron transmission rate.
参考文献

[1] Song H J, Nagatsma T. Present and future of terahertz communications[J]. IEEE Trans on Terahertz Science and Technology, 2011, 1(1): 256-263.

[2] Hirata A, Kosugi T, Takahashi H, et al. 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission[J]. IEEE Trans on Microwave Theory and Techniques, 2006, 54(5): 1937-1944.

[3] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. J Infrared Milli Terahz Waves, 2011, 32(2): 143-171.

[4] Booske J H, Dobbs R J, Jove C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Trans on Terahertz Science and Technology, 2011, 1(1): 54-75.

[5] Tucek J C, Basten M A, Gallagher D A, et al. A 100 mW, 0.670 THz power module[C]//13th IEEE International Vacuum Electronics Conference and 9th International Vacuum Electron Sources Conference. 2012: 31-32.

[6] Samoska L A. An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime[J]. IEEE Trans on Terahertz Science and Technology, 2011, 1(1): 9-24.

[7] Deng Xianjin, Wang Cheng, Lin Changxing, et al. Experimental research on 0.14 THz super high speed wireless communication system[J]. High Power Laser and Particle Beams, 2011, 23(6): 1430-1432.(in Chinese)

[8] Chen Zhang, Wang Yajun, Cheng Yanlin, et al. Fast design and cold-circuit properties simulation for the slow wave structure of a 0.14 THz broadband folded waveguide traveling wave tube[J]. J Infrared Milli Terahz Waves, 2010, 31(8): 926-933.

[9] Yu Haibo, Li Yu, Yu Tian, et al. Influence of the dimensions of W-band folded waveguide slow-wave system on its old characteristics[J]. Journal of Shandong University: Engineering Science, 2008, 38(3): 90-94.(in Chinese)

[10] Zheng Ruilin, Chen Xuyuan. Parametric simulation and optimization of cold-test properties for a 220 GHz broadband folded waveguide traveling-wave tube[J]. J Infrared Milli Terahz Waves, 2009, 30(9): 945-958.

陈樟, 王亚军. 0.14 THz瓦量级折叠波导行波管设计[J]. 强激光与粒子束, 2013, 25(6): 1483. Chen Zhang, Wang Yajun. Design of 0.14 THz watt-level folded waveguide traveling wave tube[J]. High Power Laser and Particle Beams, 2013, 25(6): 1483.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!