光学学报, 2018, 38 (9): 0902001, 网络出版: 2019-05-09   

原子芯片上指数型布居增长的原子输运 下载: 1016次

Atom Transport with Exponentially Growing Population on an Atom Chip
作者单位
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海201800
2 中国科学院大学, 北京100049
引用该论文

赵子豪, 王晓晨, 李博, 李萌, 蒋小军, 钱军, 李晓林. 原子芯片上指数型布居增长的原子输运[J]. 光学学报, 2018, 38(9): 0902001.

Zihao Zhao, Xiaochen Wang, Bo Li, Meng Li, Xiaojun Jiang, Jun Qian, Xiaolin Li. Atom Transport with Exponentially Growing Population on an Atom Chip[J]. Acta Optica Sinica, 2018, 38(9): 0902001.

参考文献

[1] Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry[J]. Physical Review Letters, 1998, 80(24): 5243-5246.

[2] Rüter C E, Makris K G, El-Ganainy R, et al. Observation of parity-time symmetry in optics[J]. Nature Physics, 2010, 6(3): 192-195.

[3] Regensburger A, Bersch C, Miri M A, et al. Parity-time synthetic photonic lattices[J]. Nature, 2012, 488(7410): 167-171.

[4] Peng B, Özdemir Ş K, Lei F C, et al. Parity-time-symmetric whispering-gallery microcavities[J]. Nature Physics, 2014, 10(5): 394-398.

[5] Feng L, Ayache M, Huang J Q, et al. Nonreciprocal light propagation in a silicon photonic circuit[J]. Science, 2011, 333(6043): 729-733.

[6] Feng L, Wong Z J, Ma R M, et al. Single-mode laser by parity-time symmetry breaking[J]. Science, 2014, 346(6212): 972-975.

[7] Hodaei H, Miri M A, Heinrich M, et al. Parity-time-symmetric microring lasers[J]. Science, 2014, 346(6212): 975-978.

[8] Fleury R, Sounas D, Alù A. An invisible acoustic sensor based on parity-time symmetry[J]. Nature Communications, 2015, 6: 5905.

[9] Li JM, Harter AK, LiuJ, et al. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms[OL].[2018-2-12]. https:∥arxiv.org/abs/1608. 05061.

[10] Husmann D, Uchino S, Krinner S, et al. Connecting strongly correlated superfluids by a quantum point contact[J]. Science, 2015, 350(6267): 1498-1501.

[11] Byrd T A, Das K K, Mitchell K A, et al. Matter, energy, and heat transfer in a classical ballistic atom pump[J]. Physical Review E, 2014, 90(5): 052107.

[12] Albiez M, Gati R, Fölling J, et al. Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction[J]. Physical Review Letters, 2005, 95(1): 010402.

[13] Schumm T, Hofferberth S, Andersson L M, et al. Matter-wave interferometry in a double well on an atom chip[J]. Nature Physics, 2005, 1(1): 57-62.

[14] Levy S, Lahoud E, Shomroni I, et al. The a.c. and d.c. Josephson effects in a Bose-Einstein condensate[J]. Nature, 2007, 449(7162): 579-583.

[15] Sommer A, Ku M, Roati G, et al. Universal spin transport in a strongly interacting Fermi gas[J]. Nature, 2011, 472(7342): 201-204.

[16] Schneider U, Hackermüller L, Ronzheimer J P, et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms[J]. Nature Physics, 2012, 8(3): 213-218.

[17] Bruderer M, Belzig W. Mesoscopic transport of fermions through an engineered optical lattice connecting two reservoirs[J]. Physical Review A, 2012, 85(1): 013623.

[18] 李胜强. 在芯片表面囚禁冷极性分子的多功能静电阱[J]. 光学学报, 2017, 37(6): 0602001.

    Li S Q. Versatile electrostatic well for trapping cold polar molecules on chip surface[J]. Acta Optica Sinica, 2017, 37(6): 0602001.

[19] 程俊, 许忻平, 张敬芳, 等. 单腔原子芯片系统中高效率的四极磁阱转移[J]. 光学学报, 2016, 36(12): 1202001.

    Cheng J, Xu X P, Zhang J F, et al. High efficiency quadrupole magnetic trap transport in single chamber atom chip system[J]. Acta Optica Sinica, 2016, 36(12): 1202001.

[20] Seaman B T, Krämer M, Anderson D Z, et al. Atomtronics: ultracold atom analogs of electronic devices[J]. Physical Review A, 2007, 75(2): 023615.

[21] Brantut J P, Grenier C, Meineke J, et al. A thermoelectric heat engine with ultracold atoms[J]. Science, 2013, 342(6159): 713-715.

[22] Brantut J P, Meineke J, Stadler D, et al. Conduction of ultracold fermions through a mesoscopic channel[J]. Science, 2012, 337(6098): 1069-1071.

[23] Das K K. Mesoscopic transport and interferometry with wave packets of ultracold atoms: effects of quantum coherence and interactions[J]. Physical Review A, 2011, 84(3): 031601.

[24] Ivanov A, Kordas G, Komnik A, et al. Bosonic transport through a chain of quantum dots[J]. The European Physical Journal B, 2013, 86(8): 345-351.

[25] Gupta S, Murch K W, Moore K L, et al. Bose-Einstein condensation in a circular waveguide[J]. Physical Review Letters, 2005, 95(14): 143201.

[26] Lesanovsky I, von Klitzing W. Time-averaged adiabatic potentials: versatile matter-wave guides and atom traps[J]. Physical Review Letters, 2007, 99(8): 083001.

[27] Jiang X J, Li X L, Zhang HC, et al. Smooth Archimedean-spiral ring waveguide for cold atomic gyroscope[J]. Chinese Optics Letters, 2016, 14(7): 070201.

[28] Liu Y, Yun M, Yin J P. Magnetic focusing of cold atomic beam with a 2D array of current-carrying wires[J]. Chinese Optics Letters, 2006, 4(9): 497-500.

[29] Fu J, Yin X, Li N Y, et al. Atom waveguide and 1D optical lattice using a two-color evanescent light field around an optical micro/nano-fiber[J]. Chinese Optics Letters, 2008, 6(2): 112-115.

[30] Bird GA. Molecular gas dynamics and direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994.

[31] Wu H, Foot C J. Direct simulation of evaporative cooling[J]. Journal of Physics B, 1996, 29(8): L321-L328.

[32] Wu H, Arimondo E, Foot C J. Dynamics of evaporative cooling for Bose-Einstein condensation[J]. Physical Review A, 1997, 56(1): 560-569.

[33] Barletta P, Tennyson J, Barker P F. Direct Monte Carlo simulation of the sympathetic cooling of trapped molecules by ultracold argon atoms[J]. New Journal of Physics, 2010, 12(11): 113002.

[34] Cerboneschi E, Menchini C, Arimondo E. Monte Carlo simulations of Bose-Einstein condensation of trapped atoms[J]. Physical Review A, 2000, 62(1): 013606.

[35] Jackson B, Zaremba E. Finite-temperature simulations of the scissors mode in Bose-Einstein condensed gases[J]. Physical Review Letters, 2001, 87(10): 100404.

[36] Jackson B, Zaremba E. Modelling Bose-Einstein condensed gases at finite temperatures with N-body simulations[J]. Physical Review A, 2002, 66(3): 033606.

[37] Jackson B, Zaremba E. Quadrupole collective modes in trapped finite-temperature Bose-Einstein condensates[J]. Physical Review Letters, 2002, 88(18): 180402.

[38] Jackson B, Adams C S. Damping and revivals of collective oscillations in a finite-temperature model of trapped Bose-Einstein condensation[J]. Physical Review A, 2001, 63(5): 053606.

[39] Wade A C J, Baillie D, Blakie P B. Directsimulation Monte Carlo method for cold-atom dynamics: classical Boltzmann equation in the quantum collision regime[J]. Physical Review A, 2011, 84(2): 023612.

[40] Guery-Odelin D, Soeding J, Desbiolles P, et al. Strong evaporative cooling of a trapped cesium gas[J]. Optics Express, 1998, 2(8): 323-329.

[41] Toschi F, Vignolo P, Succi S, et al. Dynamics of trapped two-component Fermi gas: temperature dependence of the transition from collisionless to collisional regime[J]. Physical Review A, 2003, 67(4): 041605.

赵子豪, 王晓晨, 李博, 李萌, 蒋小军, 钱军, 李晓林. 原子芯片上指数型布居增长的原子输运[J]. 光学学报, 2018, 38(9): 0902001. Zihao Zhao, Xiaochen Wang, Bo Li, Meng Li, Xiaojun Jiang, Jun Qian, Xiaolin Li. Atom Transport with Exponentially Growing Population on an Atom Chip[J]. Acta Optica Sinica, 2018, 38(9): 0902001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!