Frontiers of Optoelectronics, 2018, 11 (1): 0177, 网络出版: 2018-08-04   

On-chip silicon polarization and mode handling devices

On-chip silicon polarization and mode handling devices
作者单位
State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering,Shanghai Jiao Tong University, Shanghai 200240, China
摘要
Abstract
Mode- and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications. On-chip silicon polarization and mode handling devices are key components in integrated mode- and polarization-division multiplexed photonic circuits. In this paper, we review our recent progresses on silicon-based polarization beam splitters, polarization splitters and rotators, mode (de) multiplexers, and mode and polarization selective switches. Silicon polarization beam splitters and rotators are demonstrated with high extinction ratio, compact footprint and high fabrication tolerance. For on-chip mode multiplexing, we introduce a low loss and fabrication tolerant three-mode (de)multiplexer employing sub-wavelength grating structure. In analogy to a conventional wavelength selective switch in wavelength-division multiplexing, we demonstrate a selective switch that can route mode- and polarization-multiplexed signals.
参考文献

[1] Richardson D, Fini J, Nelson L. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362

[2] Winzer P J. Making spatial multiplexing a reality. Nature Photonics, 2014, 8(5): 345–348

[3] Ding Y, Kamchevska V, Dalgaard K, Ye F, Asif R, Gross S, Withford M J, Galili M, Morioka T, Oxenl?we L K. Reconfigurable SDM switching using novel silicon photonic integrated circuit. Scientific Reports, 2016, 6(1): 39058

[4] Bai N, Ip E, Huang Y K, Mateo E, Yaman F, LiMJ, Bickham S, Ten S, Li?ares J, Montero C, Moreno V, Prieto X, Tse V, Man Chung K, Lau A P T, Tam H Y, Lu C, Luo Y, Peng G D, Li G,Wang T. Modedivision multiplexed transmission with inline few-mode fiber amplifier. Optics Express, 2012, 20(3): 2668–2680

[5] Ryf R, Randel S, Fontaine N K, Montoliu M, Burrows E, Chandrasekhar S, Gnauck A H, Xie C, Essiambre R J, Winzer P, Delbue R, Pupalaikis P, Sureka A, Sun Y, Gruner-Nielsen L, Jensen R V, Lingle R. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5A.1

[6] Thylén L, Wosinski L. Integrated photonics in the 21st century. Photonics Research, 2014, 2(2): 75–81

[7] Soref R. Silicon photonics: a review of recent literature. Silicon, 2010, 2(1): 1–6

[8] Gondarenko A, Levy J S, Lipson M. High confinement micron-scale silicon nitride high Q ring resonator. Optics Express, 2009, 17(14): 11366–11370

[9] Chen P, Zhu Y, Shi Y, Dai D, He S. Fabrication and characterization of suspended SiO2 ridge optical waveguides and the devices. Optics Express, 2012, 20(20): 22531–22536

[10] Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photoniccrystal nanocavity. Nature Photonics, 2010, 4(7): 477–483

[11] de Rossi A, Lauritano M, Combrié S, Tran Q V, Husko C. Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity. Physical Review A, 2009, 79(4): 043818

[12] Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lon?ar M. Integrated high quality factor lithium niobate microdisk resonators. Optics Express, 2014, 22(25): 30924– 30933

[13] Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, O’Brien P, Mashanovich G Z, Nedeljkovic M. Roadmap on silicon photonics. Journal of Optics, 2016, 18(7): 073003

[14] Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J. Geon- Si laser operating at room temperature. Optics Letters, 2010, 35 (5): 679–681

[15] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photonics, 2015, 9(2): 88–92

[16] Zhang Y, Zeng C, Li D, Zhao X, Gao G, Yu J, Xia J. Enhanced light emission from Ge quantum dots in photonic crystal ring resonator. Optics Express, 2014, 22(10): 12248–12254

[17] Zhang Y, Zeng C, Zhang H, Li D, Gao G, Huang Q, Wang Y, Yu J, Xia J. Single-mode emission from Ge quantum dots in photonic crystal nanobeam cavity. IEEE Photonics Technology Letters, 2015, 27(9): 1026–1029

[18] Xu H, Xiao X, Li X, Hu Y, Li Z, Chu T, Yu Y, Yu J. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Optics Express, 2012, 20(14): 15093–15099

[19] Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16 16 non-blocking silicon optical switch based on electro-optic Mach- Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307

[20] Liu B, Zhang Y, He Y, Jiang X, Peng J, Qiu C, Su Y. Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length. Optics Express, 2017, 25(10): 11359–11364

[21] Jiang X,Wu J, Yang Y, Pan T, Mao J, Liu B, Liu R, Zhang Y, Qiu C, Tremblay C, Su Y.Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers. Optics Express, 2016, 24(3): 2183–2188

[22] Jiang X, Yang Y, Zhang H, Peng J, Zhang Y, Qiu C, Su Y. Design and experimental demonstration of a compact silicon photonic interleaver based on an interfering loop with wide spectral range. Journal of Lightwave Technology, 2017, 35(17): 3765–3771

[23] Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J. Silicon optical diode based on cascaded photonic crystal cavities. Optics Letters, 2014, 39(6): 1370–1373

[24] Chen G, Yu Y, Deng S, Liu L, Zhang X. Bandwidth improvement for germanium photodetector using wire bonding technology. Optics Express, 2015, 23(20): 25700–25706

[25] Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode- and polarization-divisionmultiplexing. Laser & Photonics Reviews, 2014, 8(2): L18–L22

[26] Dai D, Bauters J, Bowers J E. Passive technologies for future largescale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light, Science & Applications, 2012, 1(3): e1

[27] Doerr C R, Chen L, Vermeulen D, Nielsen T, Azemati S, Stulz S, McBrien G, Xu XM, Mikkelsen B, Givehchi M, Rasmussen C, Park S Y. Single-chip silicon photonics 100-Gb/s coherent transceiver. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2014, Th5C.1

[28] Dong P, Liu X, Sethumadhavan C, Buhl L L, Aroca R, Baeyens Y, Chen Y K. 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5C.6

[29] Rahman B, Somasiri N, Themistos C, Grattan K. Design of optical polarization splitters in a single-section deeply etched MMI waveguide. Applied Physics B, Lasers and Optics, 2001, 73(5–6): 613–618

[30] Ding Y, Ou H, Peucheret C. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 2013, 38(8): 1227–1229

[31] Ao X, Liu L,Wosinski L, He S. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type. Applied Physics Letters, 2006, 89(17): 171115

[32] Feng J, Zhou Z. Polarization beam splitter using a binary blazed grating coupler. Optics Letters, 2007, 32(12): 1662–1664

[33] Chu H S, Li E P, Bai P, Hegde R. Optical performance of singlemode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103

[34] Guan X, Wu H, Shi Y, Dai D. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Optics Letters, 2014, 39(2): 259–262

[35] Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Ultrasmall polarization splitter based on silicon wire waveguides. Optics Express, 2006, 14(25): 12401–12408

[36] Dai D, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Optics Express, 2011, 19(19): 18614–18620

[37] Zhang Y, He Y, Wu J, Jiang X, Liu R, Qiu C, Jiang X, Yang J, Tremblay C, Su Y. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Optics Express, 2016, 24(6): 6586–6593

[38] Kim D W, Lee M H, Kim Y, Kim K H. Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Optics Express, 2015, 23(2): 998–1004

[39] Qiu H, Su Y, Yu P, Hu T, Yang J, Jiang X. Compact polarization splitter based on silicon grating-assisted couplers. Optics Letters, 2015, 40(9): 1885–1887

[40] Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y. Ultra-compact broadband silicon polarization beam splitter based on a bridged bent directional coupler. In: Proceedings of IEEE 13th International Conference on Group IV Photonics (GFP). IEEE Photonics Society, 2016, ThP18

[41] Liu L, Ding Y, Yvind K, Hvam J M. Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process. Optics Letters, 2011, 36(7): 1059–1061

[42] Liu L, Ding Y, Yvind K, Hvam J M. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Optics Express, 2011, 19(13): 12646–12651

[43] Tan K, Huang Y, Lo G Q, Yu C, Lee C. Ultra-broadband fabricationtolerant polarization splitter and rotator. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.7

[44] Wang J, Niu B, Sheng Z,Wu A, Li W,Wang X, Zou S, Qi M, Gan F. Novel ultra-broadband polarization splitter-rotator based on modeevolution tapers and a mode-sorting asymmetric Y-junction. Optics Express, 2014, 22(11): 13565–13571

[45] Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y, Soref R A. Ultracompact and highly efficient silicon polarization splitter and rotator. APL Photonics, 2016, 1(9): 091304

[46] He Y, Zhang Y, Wang X, Liu B, Jiang X, Qiu C, Su Y, Soref R. Silicon polarization splitter and rotator using a subwavelength grating based directional coupler. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.6

[47] Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 2012, 20(18): 20021–20027

[48] Xiong Y, Xu D X, Schmid J H, Cheben P, Janz S, Ye W N. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Optics Express, 2014, 22(14): 17458–17465

[49] Halir R, Bock P J, Cheben P, Ortega-Mo?ux A, Alonso-Ramos C, Schmid J H, Lapointe J, Xu D X, Wangüemert‐Pérez J G, Molina- Fernández í, Janz S.Waveguide sub-wavelength structures: a review of principles and applications. Laser & Photonics Reviews, 2015, 9 (1): 25–49

[50] Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Optics Letters, 2013, 38 (17): 3468–3470

[51] Riesen N, Love J D. Design of mode-sorting asymmetric Yjunctions. Applied Optics, 2012, 51(15): 2778–2783

[52] Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelengthcarrier light. Optics Letters, 2013, 38(9): 1422–1424

[53] Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M. WDM-compatible mode-division multiplexing on a silicon chip. Nature Communications, 2014, 5: 3069

[54] He Y, Zhang Y, Jiang X, Qiu C, Su Y. On-chip silicon three-mode (de)multiplexer employing subwavelength grating structure. In: Proceedings of 43nd European Conference on Optical Communication . ECOC, 2017, W2C.3

[55] Doerr C R, Buhl L, Chen L, Dupuis N. Monolithic gridless 1 ′ 2 wavelength-selective switch in silicon. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2011, PDPC4

[56] Stern B, Zhu X, Chen C P, Tzuang L D, Cardenas J, Bergman K, Lipson M. On-chip mode-division multiplexing switch. Optica, 2015, 2(6): 530–535

[57] Zhang Y, Zhu Q, He Y, Qiu C, Su Y, Soref R. Silicon 1 2 modeand polarization-selective switch. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, W4E.2

[58] Winzer P, Gnauck A, Konczykowska A, Jorge F, Dupuy J Y. Penalties from in-band crosstalk for advanced optical modulation formats. In: Proceedings of 37th European Conference and Exposition on Optical Communications. ECOC, 2011, Tu.5.B.7

[59] Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C. On-chip twomode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Optics Express, 2013, 21(8): 10376–10382

[60] Downie J D, Ruffin A B. Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks. Journal of Lightwave Technology, 2003, 21(9): 1876–1886

[61] Poon A W, Luo X, Xu F, Chen H. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proceedings of the IEEE, 2009, 97(7): 1216–1238

[62] Zhang Y, He Y, Zhu Q, Qiu C, Su Y. On-chip silicon photonic 2 2 mode- and polarization-selective switch with low inter-modal crosstalk. Photonics Research, 2017, 5(5): 521–526

[63] Fang Q, Song J F, Liow T Y, Cai H, Yu M B, Lo G Q, Kwong D L. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technology Letters, 2011, 23(8): 525–527

[64] Zhu Q M, Zhang Y, He Y, An S H, Qiu C Y, Guo X H, Su Y K. Onchip switching of mode- and polarization-multiplexed signals with a 748-Gb/s/λ (8 93.5-Gb/s) capacity. In: Proceedings of CLEO, 2018, accepted

, , , , , , . On-chip silicon polarization and mode handling devices[J]. Frontiers of Optoelectronics, 2018, 11(1): 0177. Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Frontiers of Optoelectronics, 2018, 11(1): 0177.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!