Photonics Research, 2019, 7 (9): 09001003, Published Online: Aug. 9, 2019   

Acousto-optical modulation of thin film lithium niobate waveguide devices Download: 881次

Author Affiliations
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
Copy Citation Text

Lutong Cai, Ashraf Mahmoud, Msi Khan, Mohamed Mahmoud, Tamal Mukherjee, James Bain, Gianluca Piazza. Acousto-optical modulation of thin film lithium niobate waveguide devices[J]. Photonics Research, 2019, 7(9): 09001003.

References

[1] TsaiC. S., Guided-Wave Acousto-Optics: Interactions, Devices, and Applications (Springer, 1990).

[2] BergN. J.PellegrinoJ. M., Acousto-Optic Signal Processing: Theory and Implementation, 2nd ed. (Marcel Dekker, 1996).

[3] B. Eggleton, C. Poulton, R. Pant. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon., 2013, 5: 536-587.

[4] K. Fang, M. M. Matheny, X. Luan, O. Painter. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 2016, 10: 489-496.

[5] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 2014, 86: 1391-1452.

[6] R. M. White, F. W. Voltmer. Direct piezoelectric coupling to surface acoustic waves. Appl. Phys. Lett., 1965, 7: 314-316.

[7] M. M. de Lima, M. Beck, R. Hey, P. V. Santos. Compact Mach-Zehnder acousto-optic modulator. Appl. Phys. Lett., 2006, 89: 121104.

[8] R. S. Weis, T. K. Gaylord. Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A, 1985, 37: 191-203.

[9] C. Wang, M. Zhang, X. Chen, M. Bertrand, S. Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562: 101-104.

[10] K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer. Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett., 2002, 27: 179-181.

[11] H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, S. N. Zhu. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett., 2014, 113: 113601.

[12] S. Gong, G. Piazza. Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans. Microw. Theory Tech., 2013, 61: 403-414.

[13] N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, V. Laude. Acousto-optically tunable lithium niobate photonic crystal. Appl. Phys. Lett., 2010, 96: 131103.

[14] E. Strake, G. P. Bava, I. Montrosset. Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method. J. Lightwave Technol., 1988, 6: 1126-1135.

[15] M. L. Bortz, M. M. Fejer. Annealed proton-exchange LiNbO3 waveguides. Opt. Lett., 1991, 16: 1844-1846.

[16] G. Poberaj, H. Hu, W. Sohler, P. Günter. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photon. Rev., 2012, 6: 488-503.

[17] W. C. Jiang, Q. Lin. Chip-scale cavity optomechanics in lithium niobate. Sci. Rep., 2016, 6: 36920.

[18] M. Mahmoud, A. Mahmoud, L. Cai, M. Khan, T. Mukherjee, J. Bain, G. Piazza. Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes. Opt. Express, 2018, 26: 25060-25075.

[19] XuJ.StroudR., Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

[20] H. Qiao, J. Xu, S. Liu, X. Zhang, Q. Sun, H. Huang, G. Zhang. Simultaneous occurrence of beam deflection, holographic recording, and self-interference in one lithium niobate crystal. Opt. Lett., 2001, 26: 1221-1223.

[21] M. N. Armenise, V. M. N. Passaro, G. Noviello. Lithium niobate guided-wave beam former for steering phased-array antennas. Appl. Opt., 1994, 33: 6194-6209.

[22] N. Dostart, S. Kim, G. Bahl. Giant gain enhancement in surface-confined resonant stimulated Brillouin scattering. Laser Photon. Rev., 2015, 9: 689-705.

[23] J. J. Campbell, W. R. Jones. A method for estimating optimal crystal cuts and propagation direction for excitation of piezoelectric surface waves. IEEE Trans. Sonics Ultrason., 1968, 15: 209-217.

[24] HashimotoK., Surface Acoustic Wave Devices in Telecommunications Modelling and Simulation (Springer, 1990).

[25] D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, G. Roelkens. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Express, 2010, 18: 18278-18283.

[26] L. Cai, A. Mahmoud, G. Piazza. Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications. Opt. Express, 2019, 27: 9794-9802.

[27] M. Itano, F. W. Kern, M. Miyashita, T. Ohmi. Particle removal from silicon wafer surface in wet cleaning process. IEEE Trans. Semicond. Manuf., 1993, 6: 258-267.

[28] H. Gnewuch, N. K. Zayer, C. N. Pannell, G. W. Ross, P. G. R. Smith. Broadband monolithic acousto-optic tunable filter. Opt. Lett., 2000, 25: 305-307.

[29] A. Crespo-Poveda, R. Hey, K. Biermann, A. Tahraoui, P. V. Santos, B. Gargallo, P. Muñoz, A. Cantarero, M. M. de Lima. Synchronized photonic modulators driven by surface acoustic waves. Opt. Express, 2013, 21: 21669-21676.

[30] A. Rao, S. Fathpour. Compact lithium niobate electrooptic modulators. IEEE J. Sel. Top. Quantum Electron., 2017, 24: 3400114.

[31] S. Tadesse, M. Li. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun., 2014, 5: 5402.

[32] P. Rabiei, W. H. Steier, C. Zhang, L. R. Dalton. Polymer micro-ring filters and modulators. J. Lightwave Technol., 2002, 20: 1968-1975.

[33] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. Kahn, M. Loncar. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 2019, 568: 373-377.

[34] K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, K. Srinivasan. Moving boundary and photoelastic coupling in GaAs optomechanical resonators. Optica, 2014, 1: 414-420.

[35] A. Yariv. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett., 2002, 14: 483-485.

Lutong Cai, Ashraf Mahmoud, Msi Khan, Mohamed Mahmoud, Tamal Mukherjee, James Bain, Gianluca Piazza. Acousto-optical modulation of thin film lithium niobate waveguide devices[J]. Photonics Research, 2019, 7(9): 09001003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!