红外与激光工程, 2018, 47 (9): 0918009, 网络出版: 2018-10-06  

采用双平行马赫曾德调制器的四倍频信号产生

Frequency-quadruple signal generation based on dual-parallel Mach-Zehnder modulator
作者单位
1 北京工业大学 应用数理学院, 北京 100124
2 北京市精密测控技术与仪器工程技术研究中心, 北京 100124
3 电子信息控制重点实验室, 四川 成都 610036
摘要
采用了一种基于双平行马赫曾德调制器(DPMZM)产生四倍频微波信号的方法。理论分析了微波四倍频的基本原理,双平行马赫曾德调制器的上臂子MZM加载射频信号, 且上臂子MZM工作在最大传输点, 下臂子MZM直通光载波, 使DPMZM最终工作在载波抑制的偶次边带调制模式,结合光学带通滤波器滤除高阶杂散边带, 提升四倍频信号的纯净度。搭建了基于双平行马赫曾德调制器的四倍频微波光子链路, 并对四倍频系统的性能进行测试,实验结果表明系统的光边带抑制比和射频杂散抑制比分别达到了21.09 dB和28.41 dB。由于链路未引入额外的电子器件, 系统可以产生高达80 GHz的微波信号。基于双平行马赫曾德调制器产生四倍频微波信号的方法结构简单, 易于控制, 具有良好的倍频性能, 可实现高纯净度和高频率的四倍频信号的产生。
Abstract
A frequency-quadruple microwave signal method based on dual-parallel Mach-Zehnder modulator (DPMZM) was proposed. The frequency-quadruple principle was theoretically analyzed. The upper sub-MZM of the DPMZM was modulated by RF signal and operated at the maximum transmission point (MATP), while only an optical carrier was obtained from the bottom sub-MZM of the DPMZM. Then the DPMZM worked at the carrier-suppressed even-order sideband modulation mode. In order to improve the purity of quadruple frequency signal, optical bandpass filter(OBPF) was used to remove the high-order spurious sideband. Microwave photonic frequency-quadruple system was built based on DPMZM, and its performance was tested experimentally. The results demonstrate that the optical sideband suppression ratio (OSSR) and radio frequency spurious suppression ratio(RFSSR) can reach 21.09 dB and 28.41 dB, respectively. Since no extra electronic devices were used, the system can generate radio frequency with frequency up to 80 GHz. DPMZM based microwave photonic frequency-quadruple system had the advantages of simple structure, convenient operation and good frequency-quadruple performance, which can realize high purity and high frequency quadruple frequency generation.
参考文献

[1] Capmany J, Mora J, Gasulla I, et al. Microwave photonic signal processing[J]. Journal of Lightwave Technology, 2013, 31(4): 571-586.

[2] David M, Chris R, Ren 魪 H, et al. Integrated microwave photonics[J]. Laser & Photonics Reviews, 2013, 7(4): 506-538.

[3] 王云新, 李静楠, 杜浩峥,等. 基于强度一相位级联调制的微波光子下变频法[J]. 光学 精密工程, 2017, 25(4): 827-834.

    Wang Yunxin, Li Jingnan, Du Haozheng, et al. Mircowave photonic down-conversion method using intensity-phase cascaded modulation[J]. Optics and Precision Engineering, 2017, 25(4): 827-834. (in Chinese)

[4] Gan L, Liu J, Li F, et al. An optical millimeter-wave generator using optical higher order sideband injection locking in a Fabry-Pérot laser diode[J]. Journal of Lightwave Technology, 2015, 33(23): 4985-4996.

[5] Arafin S, Simsek A, Kim S K, et al. Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop[J]. Optics Express, 2017, 25(2): 681-695.

[6] Zheng J, Sun W, Wang W, et al. Frequency-doubling optoelectronic oscillator using polarization property of LiNbO3 modulator[J]. IEEE Photonics Technology Letters, 2015: 1-1.

[7] Jia Q, Zhang P, Wang T, et al. 40 GHz narrow linewidth frequency-switched microwave signal generation based on a single-longitudinal-mode-double-Brillouin-frequency spaced Brillouin fiber laser[J]. Applied Optics, 2017, 56(19): 5323.

[8] O′Reilly J J, Lane P M, Heidemann R, et al. Optical generation of very narrow linewidth millimetre wave signals[J]. Electronics Letters, 1992, 28(25): 2309-2311.

[9] 龙洁, 李政勇, 叶祝雄,等. 基于偏置马赫-曾德调制器的微波光子信号倍频[J]. 红外与激光工程, 2014, 43(12): 4078-4081.

    Long Jie, Li Zhenyong, Ye Zhuxiong, et al. Frequency multiplication of microwave photonic signal based on biased Mach-Zehnder modulator[J]. Infrared and Laser Engineering, 2014, 43(12): 4078-4081. (in Chinese)

[10] Qi G, Yao J, Seregelyi J, et al. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique[J]. IEEE Transactions on Microwave Theory & Techniques, 2005, 53(10): 3090-3097.

[11] Zhao Y, Zheng X, Wen H, et al. Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators[J]. Optics Letters, 2009, 34(21): 3250-3252.

[12] Yu J, Jia Z, Wang T, et al. Centralized lightwave radio-over-viber system with photonic frequency quadrupling for high-frequency millimeter-wave generation[J]. IEEE Photonics Technology Letters, 2007, 19(19): 1499-1501.

[13] Lin C T, Shih P T, Chen J, et al. Optical millimeter-wave up-conversion employing frequency quadrupling without optical filtering[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(8): 2084-2092.

[14] 吕敏. 基于DPMZM的RoF系统的关键技术研究[D]. 北京: 北京理工大学, 2011.

    Lv Min. Study on the key technologies of RoF system based on DPMZM[D]. Beijing: Beijing Institute of Technology, 2011. (in Chinese)

[15] Zheng H, Wen A, Gao Y, et al. Photonic frequency sextupling scheme based on two intensity modulators and a Sagnac loop[J]. Microwave & Optical Technology Letters, 2017, 59(4): 853-857.

[16] Gao Y, Wen A, Jiang W, et al. Photonic microwave generation with frequency octupling based on a DP-QPSK modulator[J]. IEEE Photonics Technology Letters, 2015, 27(21): 2260-2263.

[17] 朱子行, 赵尚弘, 幺周石,等. 相位偏移和分束比对八倍频光毫米波产生及传输的影响分析[J]. 红外与激光工程, 2012, 41(8): 2112-2118.

    Zhu Zihang, Zhao Shanghong, Yao Zhoushi, et al. Analysis of influence of phase shift drift and splitting ratio on octupling-frequency optical millimeterwave generation and distribution[J]. Infrared and Laser Engineering, 2012, 41(8): 2112-2118. (in Chinese)

王云新, 许家豪, 周涛, 王大勇, 杨登才, 钟欣. 采用双平行马赫曾德调制器的四倍频信号产生[J]. 红外与激光工程, 2018, 47(9): 0918009. Wang Yunxin, Xu Jiahao, Zhou Tao, Wang Dayong, Yang Dengcai, Zhong Xin. Frequency-quadruple signal generation based on dual-parallel Mach-Zehnder modulator[J]. Infrared and Laser Engineering, 2018, 47(9): 0918009.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!