High Power Laser Science and Engineering, 2019, 7 (1): 010000e3, Published Online: Jan. 16, 2019  

Dynamic stabilization of plasma instability

Author Affiliations
1 Graduate School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
2 Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
3 Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 18200 Prague, Czech Republic
Figures & Tables

Fig. 1. An example concept of feedback control. (a) At $t=0$ a perturbation is imposed. The initial perturbation may grow at instability onset. (b) After $\unicode[STIX]{x0394}t$, if the feedback control works on the system, another perturbation, which has an inverse phase with the detected amplitude at $t=0$, is actively imposed, so that (c) the actual perturbation amplitude is mitigated very well after the superposition of the initial and additional perturbations.

下载图片 查看原文

Fig. 2. Kapitza’s pendulum, which can be stabilized by applying an additional strong and rapid acceleration $A\text{sin}\,\unicode[STIX]{x1D714}t$.

下载图片 查看原文

Fig. 3. Superposition of perturbations defined by the wobbling driver beam. At each time the wobbler provides a perturbation, whose amplitude and phase are defined by the wobbler itself. If the system is unstable, each perturbation is a source of instability. At a certain time the overall perturbation is the superposition of the growing perturbations. The superimposed perturbation growth is mitigated by the beam wobbling motion.

下载图片 查看原文

Fig. 4. Example simulation results for the Rayleigh–Taylor instability (RTI) mitigation. $\unicode[STIX]{x1D6FF}g$ is 10% of the acceleration $g_{0}$ and oscillates with the frequency of $\unicode[STIX]{x1D6FA}=\unicode[STIX]{x1D6FE}$. As shown above and in Equation (3), the dynamic instability mitigation mechanism works well to mitigate the instability growth.

下载图片 查看原文

Fig. 5. Fluid simulation results for the RTI mitigation for the time-dependent $\unicode[STIX]{x1D6FF}g(t)=\unicode[STIX]{x1D6FF}g-\unicode[STIX]{x1D6E5}\sin \unicode[STIX]{x1D6FA}^{\prime }t$ at $t=5/\unicode[STIX]{x1D6FE}$. In the simulations $\unicode[STIX]{x1D6E5}=0.3$, and (a) $\unicode[STIX]{x1D6FA}^{\prime }=\unicode[STIX]{x1D6FA}/3$, (b) $\unicode[STIX]{x1D6FA}^{\prime }=\unicode[STIX]{x1D6FA}$ and (c) $\unicode[STIX]{x1D6FA}^{\prime }=3\unicode[STIX]{x1D6FA}$. The dynamic mitigation mechanism is robust against the time change of the perturbation amplitude $\unicode[STIX]{x1D6FF}g(t)$.

下载图片 查看原文

Fig. 6. Fluid simulation results for the RTI mitigation for the time-dependent wobbling frequency $\unicode[STIX]{x1D6FA}(t)=\unicode[STIX]{x1D6FA}(1+\unicode[STIX]{x1D6E5}\sin \unicode[STIX]{x1D6FA}^{\prime }t)$ at $t=5/\unicode[STIX]{x1D6FE}$. In the simulations $\unicode[STIX]{x1D6E5}=0.3$, and (a) $\unicode[STIX]{x1D6FA}^{\prime }=\unicode[STIX]{x1D6FA}/3$, (b) $\unicode[STIX]{x1D6FA}^{\prime }=\unicode[STIX]{x1D6FA}$ and (c) $\unicode[STIX]{x1D6FA}^{\prime }=3\unicode[STIX]{x1D6FA}$. The dynamic mitigation mechanism is also robust against the time change of the perturbation frequency $\unicode[STIX]{x1D6FA}(t)$.

下载图片 查看原文

Fig. 7. Fluid simulation results for the RTI mitigation for the time-dependent wobbling wavelength $k(t)=k_{0}+\unicode[STIX]{x0394}ke^{i\unicode[STIX]{x1D6FA}_{k}^{\prime }t}$, at $t=5/\unicode[STIX]{x1D6FE}$. In the simulations $\unicode[STIX]{x0394}k/k_{0}=0.3$, and (a) $\unicode[STIX]{x1D6FA}_{k}^{\prime }=\unicode[STIX]{x1D6FA}/3$, (b) $\unicode[STIX]{x1D6FA}_{k}^{\prime }=\unicode[STIX]{x1D6FA}$ and (c) $\unicode[STIX]{x1D6FA}_{k}^{\prime }=3\unicode[STIX]{x1D6FA}$. The dynamic mitigation mechanism is also robust against the time change of the perturbation wavelength $k(t)$.

下载图片 查看原文

Fig. 8. Filamentation instability. In this case an electron beam has a density perturbation in the transverse direction, and is injected into a plasma. In the plasma return current is induced to compensate for the electron beam current. The perturbed electron beam itself defines the filamentation instability phase, and the e-beam axis oscillates in the $y$ direction in this example case. Therefore, the filamentation instability is mitigated by the dynamic stabilization mechanism.

下载图片 查看原文

Fig. 9. Dynamic stabilization mechanism for the filamentation instability. (a) A modulated electron beam is imposed to induce the filamentation instability. The electron beam axis is wobbled or oscillates transversally with its frequency of $\unicode[STIX]{x1D6FA}$. (b) At a later time its phase-shifted perturbation is additionally imposed by the electron beam itself. The overall perturbation is the superimposition of all the perturbations, and the filamentation instability is dynamically stabilized.

下载图片 查看原文

Fig. 10. Filamentation instability simulation results without and with the electron beam oscillation. The current density $J_{x}$ is shown at each time step. When the electron beam axis oscillates in the $y$ direction ((d)–(f) and (g)–(i)), the filamentation instability growth is clearly mitigated.

下载图片 查看原文

Fig. 11. Magnetic field $B_{z}$ for the filamentation instability without and with the electron beam oscillation.

下载图片 查看原文

Fig. 12. Histories of the normalized magnetic field energy $U_{Bz}\propto |B_{z}|^{2}$. When the electron beam transverse oscillation frequency $\unicode[STIX]{x1D6FA}$ in $y$ becomes larger than or comparable to $\unicode[STIX]{x1D6FE}_{F}$, the dynamic stabilization effect is remarkable.

下载图片 查看原文

Fig. 13. 3D PIC simulation results for the filamentation instability growth at (a) $t=0$ and (b) $t=32\unicode[STIX]{x1D714}_{pe}$ without the electron beam wobbling motion, and (c) $t=0$ and (d) $t=32\unicode[STIX]{x1D714}_{pe}$ with the wobbling motion. The histories of the normalized magnetic field energy $U_{Bz}\propto |B_{z}|^{2}$ is shown in (e). When the electron beam transverse oscillation frequency $\unicode[STIX]{x1D6FA}$ in $y$ becomes larger than or comparable to $\unicode[STIX]{x1D6FE}_{F}$, the dynamic stabilization effect is also remarkable. The 3D simulation results also confirm the instability mitigation mechanism in the plasma.

下载图片 查看原文

S. Kawata, T. Karino, Y. J. Gu. Dynamic stabilization of plasma instability[J]. High Power Laser Science and Engineering, 2019, 7(1): 010000e3.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!