中国激光, 2021, 48 (1): 0101003, 网络出版: 2021-01-13   

基于模糊控制的自适应激光功率稳定系统研究 下载: 921次

Self-Adaptive Laser Power Stabilization System Based on Fuzzy Control
作者单位
1 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
摘要
研究了一种基于模糊控制的嵌入式激光功率稳定系统,用声光调制器作为功率稳定的外部环路反馈器件,采用模数转换器和数模转换器以及数字信号处理芯片组成数控功率稳定电路。用模糊控制方案解决了传统比例-积分-微分(PID)的超调问题,反馈环路的稳定时间为1.8ms。有效抑制了激光功率在低频部分的相对强度噪声,在1Hz处从-88dBc/Hz改善至-110dBc/Hz。激光功率的相对起伏由0.29%降低至0.035%。相比于传统PID,模糊PID可以根据系统所处状态实时调整参数,从而达到自适应的效果。
Abstract

Objective Laser are used in many research fields such as quantum communication, atom cooling, atom clock, and materials processing. The power stability of laser is very important, especially in the field of quantum precision measurements where it directly affects the experimental measurement accuracy. For the atom clock, the power stability of the laser affects its stability and accuracy. Therefore, it is necessary to make the active laser power stabilization system. As a general control method, the fuzzy proportional-integral-differential (PID) control has been widely used in the closed-loop control systems, such as temperature control, path planning, flight attitude adjustment, etc. A recent study investigates the laser power stabilization with the analog circuit PID, but in which the values of PID parameters need to be readjusted if it is used in different environments and the stabilized value of laser power cannot be changed during the experiments. In order to solve these problems, the fuzzy PID control scheme is proposed. We hope that our solution can reduce the stable time of the feedback loop, improve the relative intensity noise, and achieve long-term stabilization of laser power.

Methods There are two types of feedback loop for the laser power stabilization, one is feedback to the laser current (internal loop), and the other is feedback to an acoustic optical modulator (AOM) (external loop). Generally, the external lock loop is used because the internal loop will disturb the laser current and thus the frequency. In this paper, an embedded system of laser power stabilization based on fuzzy control is investigated. The lock loop is realized by feedback to an AOM. After passing through AOM, the laser generates diffractive light. By adjusting the diaphragm only +1 order diffraction light is allowed to pass through. After passing through the beam splitter, it is divided into two beams. One beam is detected by the photodetector, the other beam is used for experiments. The digital control circuit consists of an analog-to-digital (AD) converter, a digital-to-analog (DA) converter, and a digital signal processing chip. First of all, the laser power is detected by photodetector. Then the voltage signal is converted to a digital signal by an AD conversion. The error signal is obtained by comparing with the standard set voltage. After that the error signal and its rate of change as well as the three parameters of PID are fuzzy, and the fuzzy algorithm controller performs the calculations. The results of the parameters of PID are clarified. Finally, the amplitude modulation voltage of AOM is output through DA after the PID operation. The key to the performance of the laser power stabilization is setting the fuzzy rules. Table 1 shows the fuzzy rules adjusted according to the actual situation.

Results and Discussions The set voltage of laser power is 3.5V. It is defined that the loop stable time is the one required for the photodetector voltage that increases from 0 V to 3.5V. The stable time of laser power after fuzzy control can be obtained by monitoring the voltage of the photodetector in the feedback loop. Compared to traditional PID, the stable time is reduced from 4.7ms to 1.8ms due to the absence of overshoot (Fig. 5). The relative intensity noise of the laser power can be measured by placing the photodetector outside the loop (the beam for physical experiments). The results show that the power spectral density of relative intensity noise of the laser is depressed from -88dBc/Hz to -110dBc/Hz at 1 Hz and from -93dBc/Hz to -110dBc/Hz at 10Hz, and is lower than -110dBc/Hz over a wide frequency range, meanwhile the relative intensity noise of DA output voltage is lower than that of the laser (Fig. 6), meeting the experimental requirements. In addition, the relative fluctuation of the laser power is measured over three hours and improved from 0.29% to 0.035% after power stabilization (Fig. 7). Here, the relative fluctuation of the laser power is the ratio of the laser power fluctuation to the average.

Conclusions In this paper, a fuzzy control is applied to laser power stabilization using an embedded technique. The amplitude modulation voltage of the AOM is used to change the diffraction efficiency of the laser and thus achieve the laser power stabilization. Compared with traditional PID, after adding the fuzzy control, the feedback loop will not oscillate due to overshoot, and the stable time of the feedback loop is reduced from 4.7ms to 1.8ms. After power stabilization, the power spectral density of laser relative intensity noise is greatly improved in the low-frequency part, which is suppressed by 22 dB at 1Hz, and is lower than -110dBc/Hz over a wide frequency range. The time domain test results show that the relative fluctuation of the laser power improves from 0.29% to 0.035% within 3h. In the field of quantum precision measurement, the power stabilization technique is important for improving the measurement accuracy, such as improving the stability of atom clock and the accuracy of interferometer measurements, and because the power stabilization technique can change the stabilized laser power in real time, it is suitable for some experimental procedures that need to change the laser power in specific situations.

1 引言

激光器广泛应用于量子通信[1]、原子冷却[2-4]、原子钟[5-7]以及材料加工[8]等研究领域。激光器的功率稳定性非常重要,特别是在量子精密测量领域,其直接影响实验测量精度。对原子钟而言,激光器的功率稳定性会影响原子钟的稳定度指标[6,9]。因此,对激光器实施功率稳定非常重要。激光器功率稳定一般分为激光器内部环路反馈和外部环路反馈。内部环路反馈一般通过反馈激光器的电流实现功率稳定,但是反馈激光器电流会影响激光器的波长,因此通常采用外部环路反馈。外部环路反馈采用光学调制器实现,以声光调制器(AOM)[10]为例,通过反馈加载在AOM上的射频功率控制激光的衍射效率,进而实现功率稳定。

模糊比例-积分-微分(PID)控制作为成熟的控制方法,已广泛应用于各种闭环控制系统中,如温度控制[11-13]、路径规划[14]、飞行姿态调整[15]等。在文献[ 9]中,将模拟PID应用于激光功率稳定,通过模拟电路的方法来实现闭环控制,这种功率稳定方案在实验过程中不允许调整激光的功率,因此对于一些需要实时改变激光器光强的实验并不适用。传统的模拟PID控制环路通常在特定环境下通过调整参数来优化反馈效果,而当外部环境发生变化时,之前的参数并不能达到最优的控制效果。为此,本文采用嵌入式技术实现模糊PID控制,解决了上述问题,模糊PID能根据系统所处的不同状态,实时改变参数,并且优化了PID的超调问题,缩短了反馈环路的稳定时间。

2 实验装置及原理

图1为激光器功率稳定的原理框图。本文所用激光器是TOPTICA公司的半导体激光器DLpro,激光通过AOM后产生衍射光,调整光阑只允许+1级衍射光通过,再经过分光棱镜(BS)后分成两束,一束进入光电管(PD,S2386-44K,滨松公司,日本),另一束用作后续的物理实验。激光进入光电管后,光信号转换成电压信号,经过模数(AD)转换器转换成数字信号,然后进入数字信号处理器(DSP)进行运算处理,计算结果通过数模(DA)转换器转换成模拟电压信号后,加载到压控振荡器(VCO)的调幅端,对AOM的衍射效率进行调节,最终实现功率稳定。上述过程即为激光功率稳定的负反馈环路,其关键在于如何设计DSP中的处理算法。

图 1. 激光功率稳定实验装置图

Fig. 1. Experimental setup for laser power stabilization

下载图片 查看所有图片

表 1. KPKIKD模糊规则

Table 1. Fuzzy rules of KP, KI, and KD

e(k)de(k)/dt
NBNMNSZOPSPMPB
NBPB/NB/PSPB/NB/ZOPM/NB/ZOPM/NM/ZOPS/NM/PSPS/ZO/PBZO/ZO/PB
NMPB/NB/NSPB/NB/NSPM/NM/NSPM/NM/NSPS/NS/ZOZO/ZO/NSZO/ZO/PM
NSPM/NM/NBPM/NM/NBPM/NS/NMPS/NS/NSZO/ZO/ZOPS/PS/PSNM/PS/PM
ZOPM/NM/NBPS/NS/NMPS/NS/NMZO/ZO/NSNS/PS/ZONM/PS/PSNM/PM/PM
PSPS/NS/NBPS/NS/NMZO/ZO/NSNS/PS/NSNS/PS/ZONM/PM/PSNM/PM/PS
PMZO/ZO/NMZO/ZO/NSNS/PS/NSNM/PM/NSNM/PM/ZONM/PB/PSNB/PB/PS
PBZO/ZO/PSNS/ZO/ZONS/PS/ZONM/PM/ZONM/PB/ZONB/PB/PBNM/PB/PB

查看所有表

由于DSP具有高速数据运算能力,能够对激光器的功率变化进行实时反馈,因此本实验选取DSP作为主控芯片。DSP中模糊自适应PID的算法流程如图2所示,增量式PID相比位置式PID有着占用内存空间小[16],且不会出现积分饱和过深的优势,因此本文采用增量式PID,其离散形式为

uk=uk-1+KP·ek-ek-1+KI·ek+KD·ek-2ek-1+ek-2,(1)

式中:k为反馈循环次数;u(k)为第k次循环的输出电压;KPKIKD分别为PID的比例系数、积分系数及微分系数;ek=sk-yk为光电管探测电压y(k)与设定电压s(k)在第k次循环时的差值。由(1)式可知,u(k)由上一次反馈循环的输出电压u(k-1)以及最近三次的误差值e(k)、e(k-1)、e(k-2)共同决定。PID实际的控制效果与KPKIKD的选择密切相关,如果KP过大,则会导致系统振荡;如果KI过大,则会导致反馈过冲,增加系统进入稳态的时间。因此,传统的PID需要对这三个参数进行优化,并且当系统所处环境变化时,参数还需重新调整。本文在传统PID的基础上引入了模糊算法控制器,根据不同反馈循环次数下的e(k)及其变化率de(k)/dt实时地对KPKIKD进行调整,从而达到自适应的效果。

图 2. 模糊PID算法流程图

Fig. 2. Flowchart of fuzzy PID algorithm

下载图片 查看所有图片

模糊算法控制器主要包括三个部分,首先对e(k)和de(k)/dt进行模糊化,然后根据模糊规则得到KPKIKD所对应的模糊量,最后对这三个系数的模糊量进行清晰化。本文采用三角形隶属度函数对变量进行模糊化,如图3所示。

图 3. 隶属度函数

Fig. 3. Membership degree function

下载图片 查看所有图片

首先,将e(k)、de(k)/dtKPKIKD都映射到论域{-3,-2,-1,0,1,2,3},之后根据隶属度函数得到系统当前处于各个状态的概率。NB(负强)、NM(负中)、NS(负弱)、ZO(零)、PS(正弱)、PM(正中)、PB(正强)表示变量所处状态。例如:e(k)映射到论域中所对应的值为-1.3,由图3可知,状态NM、NS在-1.3处不为零,由于本文采用三角形隶属度函数,所以可以很容易知道此时e(k)处于NM的概率为0.3,处于NS的概率为0.7。

一般地,将e(k)、de(k)/dt模糊化后可分别得到系统处于四种状态的概率,再根据模糊规则得到KPKIKD所对应的隶属度,表1为根据实际测试结果调整后的模糊规则。最后将PID的三个系数清晰化,本文采用重心法[17],其表达式为

K=i=0nPi·Zi,(2)

式中:K为PID参数;Zi为查表所得的状态;P(i)为系统处于Zi的概率。值得注意的是,在将KPKIKD映射到论域时,要根据实际调试情况选取合适的因子,而在清晰化的最后,输出参数K还需要乘上这个因子才是最终输出到PID控制器中的参数。

3 硬件设计

图4给出了功率稳定电路的原理框图。本文选用的DSP、AD、DA、参考电压芯片的型号分别为TMS320F28335、LTC2367-18、AD5781、LT6657-5。其中,PD INPUT为反馈环路内光电管的电压,TO AOM端口接到AOM驱动的调幅端。光电管电压先经过一个低通滤波器后进入跟随器,之后再经过二次滤波进入AD转换器。具体的模数转换过程如下:先由TMS320F28335的管脚GPIO58发送一个高脉冲到达LTC2367-18的CNV管脚,开始转换,在此期间BUSY端口会被拉高,当转换完成后会自动变换低电平,因此可通过检测GPIO57的电压得知转换是否完成,之后再由LTC2367-18的SDO端口将转换结果传给DSP,做进一步的算法处理。数据经过模糊算法控制器以及PID处理后的结果通过SPISIMO端口传给DA芯片,最终通过AD5781的OUT端口经由电压跟随器输出到AOM驱动的调幅端。

图 4. 功率稳定电路简略图

Fig. 4. Sketch of laser power stabilization circuit

下载图片 查看所有图片

本文采用的参考电压芯片为LT6657-5,其输出标准的5V电压作为AD芯片(LTC2367-18)的基准电压。而DA芯片(AD5781)需要正负参考电压,通过一个电压反向器得到-5V并连接至REFNS端口,如图4所示。参考电压的稳定性会直接影响功率稳定性,因此需要测试最终输出端口(TO AOM)的电压稳定性(见实验结果与分析部分)。

4 实验结果与分析

激光功率稳定的电压设定为3.5V,图5为使用传统PID与模糊PID实现激光器功率稳定的实验结果对比。图中纵轴的PD电压为图1中反馈环路内的光电管电压,通过监测该点电压可以得到环路从闭合到稳定所需要的时间。三角点线为典型的PID控制曲线,可以看出,激光器功率在设定点附近做振幅逐渐减小的振动,由于超调的原因,经过大约4.7ms后激光的功率达到稳定。实线为模糊PID的控制结果,由于其根据系统所处状态实时控制PID的三个参数,可以看出,在稳定过程中基本没有超调,并且从环路闭合到稳定所需的时间缩短至1.8ms。

图 5. 反馈环路的稳定过程

Fig. 5. Stabilization process of feedback loop

下载图片 查看所有图片

将光电管置于图1所示的BS之后,测试环路外功率稳定的性能。图6为环路外激光相对强度噪声的功率谱密度,星形点线和圆点实线分别为无功率稳定和有功率稳定时激光的相对强度噪声,而三角点线为DA输出固定电压时的相对强度噪声。从图6可以看出,在1Hz处激光相对强度噪声从-88dBc/Hz压低到-110dBc/Hz,在10Hz处从-93dBc/Hz压低到-110dBc/Hz。在1~40Hz范围内,有明显改善,对于更高频的部分由于AD前滤波器带宽的选择以及光电管带宽等原因,功率稳定前后激光的相对强度噪声相当,但都小于-110dBc/Hz,满足实验要求。值得注意的是,DSP运行一次完整的闭环算法所需要的时间约为300μs,即DA的电压刷新率约为3.3kHz,进而导致功率稳定时激光的相对强度噪声在3.3kHz附近出现一个大的峰值。从图6还可以看出,灰色实线在10kHz的频率范围内处于红色实线之下,说明选择的参考电压芯片以及DA芯片能够满足功率稳定的需求。

图 6. 环路外激光相对强度噪声的功率谱密度

Fig. 6. Power spectral density of relative intensity noise of laser outside the lock loop

下载图片 查看所有图片

从时域上来看,激光功率的稳定性可以通过监测环路外功率的变化来获得,图7给出了功率稳定前后,环路外激光器3h光功率的变化情况。定义功率相对起伏为

S=ΔPP¯,(3)

式中:ΔP为功率变化量; P-为功率平均值。从图7可以看出,无功率稳定时激光器功率随时间漂移,并且短时间内的浮动也很大;经过功率稳定后,激光功率基本稳定在5.745mW,其相对起伏从0.29%改善至0.035%。

图 7. 激光功率3h内的变化

Fig. 7. Variation of laser power over three hours

下载图片 查看所有图片

5 结论

本文采用嵌入式技术,将模糊控制应用于激光功率稳定。通过反馈AOM的调幅电压改变激光的衍射效率,进而实现激光的功率稳定。与传统的PID相比,加入模糊控制之后,反馈环路从闭合到稳定的过程中不会出现超调所导致的振荡,环路稳定所需要的时间从4.7ms缩短至1.8ms。功率稳定后,激光相对强度噪声的功率谱密度在低频部分得到了很大改善,在1Hz处被压低了22dB,并且在很宽的频率范围内,都低于-110dBc/Hz,能够满足实验要求。时域测试结果表明,激光功率在3h内的相对起伏从0.29%改善至0.035%。在量子精密测量领域,该功率稳定技术对于提高测量精度有重要意义,比如提高原子钟的稳定度指标和干涉仪的测量精度等,而且由于该功率稳定技术可以实时改变稳定后的激光功率,适用于一些实验过程中需要改变激光功率的特定场合。

参考文献

[1] Marino AM, StroudJ R. Deterministic secure communications using two-mode squeezed states[EB/OL]. ( 2006-05-26)[2020-07-28]. https://arxiv.org/abs/quant-ph/0605229.

[2] 王秀梅, 李琳, 孟艳玲, 等. 积分球冷原子钟冷原子数稳定的新方法[J]. 光学学报, 2017, 37(8): 0802001.

    Wang X M, Li L, Meng Y L, et al. New method for cold atom number stabilization in integrating sphere cold atom clock[J]. Acta Optica Sinica, 2017, 37(8): 0802001.

[3] Cheng H D, Zhang W Z, Ma H Y, et al. Laser cooling of rubidium atoms from background vapor in diffuse light[J]. Physical Review A, 2009, 79(2): 023407.

[4] Li Q X, Yan S H, Wang E L, et al. High-precision and fast-response laser power stabilization system for cold atom experiments[J]. AIP Advances, 2018, 8(9): 095221.

[5] Yu M Y, Cheng H D, Meng Y L, et al. An integrated laser system for the cold atom clock[J]. Review of Scientific Instruments, 2019, 90(5): 053203.

[6] Wang Y N, Meng Y L, Wan J Y, et al. Reaching a few 10 -15 long-term stability of integrating sphere cold atom clock[J]. Chinese Optics Letters, 2018, 16(7): 070201.

[7] 王新文, 项静峰, 彭向凯, 等. 基于光纤激光放大倍频的冷原子钟光源[J]. 光学学报, 2019, 39(9): 0914002.

    Wang X W, Xiang J F, Peng X K, et al. Lightsource of rubidium cold atomic clock based on fiber laser amplification and frequency doubling[J]. Acta Optica Sinica, 2019, 39(9): 0914002.

[8] 邱莹, 张凤英, 胡腾腾, 等. 激光功率对TC4表面熔覆Ti40阻燃钛合金组织及硬度的影响[J]. 中国激光, 2019, 46(11): 1102011.

    Qiu Y, Zhang F Y, Hu T T, et al. Effect of laser power on microstructure and hardness of Ti40 flame-retardant titanium alloy deposited by laser cladding on TC4 surface[J]. Chinese Journal of Lasers, 2019, 46(11): 1102011.

[9] TricotF, Phung DH, LoursM, et al. ( 2018-10-23)[2020-07-28]. org/abs/1808. 09777. https://arxiv.

[10] Kim D I, Rhee H G, Song J B, et al. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator[J]. Review of Scientific Instruments, 2007, 78(10): 103110.

[11] 戴俊珂, 姜海明, 钟奇润, 等. 基于自整定模糊PID算法的LD温度控制系统[J]. 红外与激光工程, 2014, 43(10): 3287-3291.

    Dai J K, Jiang H M, Zhong Q R, et al. LD temperature control system based on self-tuning fuzzy PID algorithm[J]. Infrared and Laser Engineering, 2014, 43(10): 3287-3291.

[12] 阮见, 邹杨, 朱海华, 等. 模糊控制在熔盐系统温度控制中的应用[J]. 核动力工程, 2018, 39(1): 106-111.

    Ruan J, Zou Y, Zhu H H, et al. Application of fuzzy control method for temperature control of molten salt system[J]. Nuclear Power Engineering, 2018, 39(1): 106-111.

[13] Soyguder S, Karakose M, Alli H. Design and simulation of self-tuning PID-type fuzzy adaptive control for an expert HVAC system[J]. Expert Systems with Applications, 2009, 36(3): 4566-4573.

[14] 任永杰, 赵显, 郭思阳, 等. 基于wMPS和模糊控制的AGV路径规划控制[J]. 光学学报, 2019, 39(3): 0312003.

    Ren Y J, Zhao X, Guo S Y, et al. Path planning control of automated guided vehicle based on workshop measurement positioning system and fuzzy control[J]. Acta Optica Sinica, 2019, 39(3): 0312003.

[15] 蒋林, 冷雪峰, 罗小华, 等. 基于模糊单神经元PID的四旋翼控制研究[J]. 计算机仿真, 2019, 36(10): 39-43.

    Jiang L, Leng X F, Luo X H, et al. Quadrotor control based on fuzzy-single neuron PID controller[J]. Computer Simulation, 2019, 36(10): 39-43.

[16] 莫兴福, 李沙. 基于遗传算法优化的增量式PID控制器设计与实现[J]. 现代信息科技, 2020( 3): 73- 75, 80.

    Mo XF, LiS. Design and implementation of incremental PID controller based on genetic algorithm optimization[J]. Modern Information Technology, 2020( 3): 73- 75, 80.

[17] 石辛民, 郝整清. 模糊控制及其MATLAB仿真[M]. 北京: 清华大学出版社, 2008: 48- 51.

    Shi XM, Hao ZQ. Fuzzy control and MATLAB simulation[M]. Beijing: Tsinghua University Press, 2008: 48- 51.

欧阳鑫川, 杨博文, 万金银, 肖玲, 成华东. 基于模糊控制的自适应激光功率稳定系统研究[J]. 中国激光, 2021, 48(1): 0101003. Xinchuan Ouyang, Bowen Yang, Jinyin Wan, Ling Xiao, Huadong Cheng. Self-Adaptive Laser Power Stabilization System Based on Fuzzy Control[J]. Chinese Journal of Lasers, 2021, 48(1): 0101003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!