发光学报, 2018, 39 (5): 661, 网络出版: 2018-06-29  

具有e指数内建电场的透射式GaAs光电阴极响应特性的理论分析

Theoretical Study of Response Characteristics of Transmission-mode GaAs Photocathodes with Exponential Inner Electric Field
作者单位
陕西理工大学 物理与信息工程学院, 陕西 汉中 723001
摘要
设计了具有e指数内建电场的透射式GaAs负电子亲和势阴极, 利用数值计算方法研究了它的时间响应特性和量子效率特性。结果表明, 当吸收区厚度L~0.2~1.5 μm时, 阴极的响应时间和量子效率均随L的增大而增大; 尤其当L~1.1 μm时响应时间达到10 ps, 量子效率达到12.5%~20%, 迄今为止, 与其他GaAs光电阴极相比, 在相同光谱响应条件下, 该响应速度是最高的。另外,在不同L下, 获得了平均时间衰减常数τ′的函数分布和能够获得最短响应时间的最优系数因子β分布, 为新型高速响应GaAs光电阴极的时间响应和量子效率优化提供了必要的理论基础和数据支持。
Abstract
A new-type transmission-mode NEA GaAs photocathode with the exponential built-in electric field was designed. The two important features of the new-type GaAs photocathode, the time response and the quantum yield, were theoretically studied by numerical methods. The simulation results show that the response time and the quantum yield of the new-type photocathode gradually increase with the widths of absorption layer when the widths are 0.2-1.5 μm. Especially, when the width is 1.1 μm, the time responses are 10 ps, and the quantum yield is 12.5%-20%. So far, compare with previous GaAs photocathodes with other doping modes, this one has the shortest response time in the same condition of the spectral responses. Meanwhile, the two functions of the average decay time and optimal factor of the built-in electric field are obtained under different widths of absorption layers, the former is related to time responses, and under the latter condition the shortest response times are obtained. The above results provide the theoretical and data basis for the design to optimize new-type GaAs photocathodes with ultrafast response.
参考文献

[1] KARKARE S, BOULET L, CULTRERA L, et al.. Ultrabright and ultrafast Ⅲ-V semiconductor photocathodes [J]. Phys. Rev. Lett., 2014, 112(9):097601.

[2] KARKARE S, DIMITROV D, SCHAFF W, et al.. Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes [J]. J. App. Phys., 2013, 113:104904.

[3] SCHWEDE J W, SARMIENTO T, NARASIMHAN V K, et al.. Photon-enhanced thermionic emission from heterostructures with low interface recombination [J]. Nat. Commun., 2013, 4:67-72.

[4] DOWELL D H, BAZAROV I, DUNHAM B, et al.. Cathode R&D for future light sources [J]. Nucl. Instrum. Methods Phys. Res., 2010, 622(3):685-697.

[5] 姜德龙, 房立峰, 那延祥, 等. 微通道板离子壁垒膜粒子阻透特性的蒙特卡罗模拟 [J]. 发光学报, 2011, 32(8):816-820.

    JIANG D L, FANG L F, NA Y X, et al.. Monte-Carlo simulations on the stopping and transmittance characteristics of particles in the ion barrier film of microchannel plate [J]. Chin. J. Lumin., 2011, 32(8):816-820. ( in Chinese)

[6] ZHAO J, CHANG B K, XIONG Y J, et al.. Influence of the antireflection, window, and active layers on optical properties of exponential-doping transmission-mode GaAs photocathode modules [J]. Opt. Commun., 2012, 285(5):589-593.

[7] JONES L B, ROZHKOV S A, BAKIN V V, et al.. Cooled transmission-mode NEA-photocathode with a band-graded active layer for high brightness electron source [J]. Spin Phys.:18th Int. Spin Phys. Symp., 2009, 1149(1):1057-1061.

[8] PHILLIPS C C, HUGHES A E, SIBBERT W. Quantitative XPS surface chemical analysis and direct measurement of the temporal response times of glass-bonded NEA GaAs transmission photocathodes [J]. J. Phys. D: Appl. Phys., 1984, 17:1713-1725.

[9] AULENBACHER K, SCHULER J, HARRACH D V. Pulse response of thin Ⅲ/V semiconductor photocathodes [J]. J. Appl. Phys., 2002, 92(12):7536-7543.

[10]

    CAI Z P, YANG W Z, TANG W D, et al.. Numerical analysis of temporal response of a large exponential-doping transmission-mode GaAs photocathode [J]. Mater. Sci. Semicond. Proc., 2013, 16(2):238-244.

[11] 蔡志鹏. 用于双微带阴极选通型分幅相机的改进型第三代像增强器研究 [D]. 北京: 中国科学院大学, 2013.

    CAI Z P. Research on Improved Third Generation Image Intensifier for Dual Microstrip Cathode Gated Framing Camera [D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)

[12] GUO L H, LI J M, HOU X. Calculation of temporal response of field-assited transmission-mode GaAs NEA photocathodes [J]. Solid State Electron., 1990, 33(4):435-439.

[13] ZHANG Y J, NIU J , ZOU J J, et al.. Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process [J]. Appl. Opt., 2010, 49(20):3935-3940.

[14] VERGARA G, HERRERA-G A, SPICER W E. Influence of the dopant concentration on the photoemission in NEA GaAs photocathodes [J]. J. Appl. Phys., 1996, 80:1809-1815.

[15] TEREKHOV A S, ORLOV D A. Photoelectron thermalization near the unpinned surface of GaAs photocathodes [J]. SPIE, 1991, 2550:157-164.

[16] 乔建良, 常本康, 牛军, 等. NEA GaN和GaAs光电阴极激活机理对比研究 [J]. 真空科学与技术学报, 2009, 29(2):115-118.

    QIAO J L, CHANG B K, NIU J, et al.. Similarities and differences between negative electron affinity GaN and GaAs photocathode activation mechanisms [J]. Chin. J. Vac. Sci. Technol., 2009, 29(2):115-118. (in Chinese)

[17] TIWARI S, WRITHT S L. Material properties of p-type GaAs at large dopings [J]. Appl. Phys. Lett., 1990, 56(6):563-565.

蔡志鹏, 姚军财, 黄文登, 何军锋. 具有e指数内建电场的透射式GaAs光电阴极响应特性的理论分析[J]. 发光学报, 2018, 39(5): 661. 蔡志鹏, 姚军财, 黄文登, 何军锋. Theoretical Study of Response Characteristics of Transmission-mode GaAs Photocathodes with Exponential Inner Electric Field[J]. Chinese Journal of Luminescence, 2018, 39(5): 661.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!