光学学报, 2016, 36 (10): 1006002, 网络出版: 2016-10-12   

低损耗硫系玻璃光纤的挤压制备及其性能研究 下载: 537次

Fabrication and Properties of Low-Loss Chalcogenide Optical Fiber Based on the Extrusion Method
刘硕 1,2,*唐俊州 1,2刘自军 1,2江岭 1,2吴波 1,2密楠 1,2王训四 1,2赵浙明 1,2聂秋华 1,2戴世勋 1,2潘章豪 1,2
作者单位
1 宁波大学高等技术研究院红外材料及器件实验室, 浙江 宁波 315211
2 浙江省光电探测材料及器件重点实验室, 浙江 宁波 315211
摘要
采用动态蒸馏提纯技术,配合优化的均化熔融和低温焠冷法技术,制备了高纯度的As40S60和As38S62硫系玻璃;通过高效挤压法制备出芯包结构的硫系光纤预制棒;在聚合物——聚醚砜树脂(PES)的保护下拉制出比例精确、离心率接近于0且损耗低的As40S60/As38S62芯包结构的硫系玻璃光纤。挤压过程可基本消除芯包界面的缺陷,从根本上降低了光纤的制备损耗。测试数据表明:经过有效提纯后,As40S60玻璃的红外透射率明显提高,绝大多数杂质吸收峰被消除。对芯包结构光纤输入端涂覆Ga层后,通过截断法进行了损耗测试,该光纤的传输背景损耗维持在0.2 dB/m,在4.8 μm处获得约为0.13 dB/m的最低损耗。
Abstract
A specialized dynamic distillation and purification process is used and cooperated with the optimized homogenized melt and the low-temperature quenching techniques to obtain high purity As40S60 and As38S62 glass. Then an efficient extrusion method is applied to the preparation of a core-cladding chalcogenide optical fiber preform. After that, under the protection of the polymer, which is polyethersulfone (PES), the preform is drawn into the As40S60/As38S62 core-cladding structure chalcogenide optical fiber with precise proportion, eccentricity closing to zero and low loss. After the high pressure extrusion process, the defects in the core-cladding interface are nearly eliminated, and thus the fiber loss is reduced effectively. The experimental results show that the infrared transmittance of As40S60 glass is obviously improved after effective purification and most impurity absorption bands in the spectra disappear. After the surface of fiber input ends is coated the Ga layer, the standard cut-back technique is adopted to measure the attenuation of this As40S60/As38S62 fiber. The transmitting background loss is around 0.2 dB/m, and the minimum loss is about 0.13 dB/m at 4.8 μm.
参考文献

[1] Smektala F, Quemard C, Leneindre L, et al. Chalcogenide glasses with large non-linear refractive indices[J]. Journal of Non-Crystalline Solids, 1998, 239(1-3): 139-142.

[2] Eggleton B J, Luther-Davies B, Richardson K. Chalcogenide photonics[J]. Nature Photonics, 2011, 5(3): 141-148.

[3] Houizot P, Boussard-Plédel C, Faber A J, et al. Infrared single mode chalcogenide glass fiber for space[J]. Optics Express, 2007, 15(19): 12529-12538.

[4] Gopal V, Harrington J A, Goren A, et al. Coherent hollow-core waveguide bundles for infrared imaging[J]. Optical Engineering, 2004, 43(5): 1195-1199.

[5] Suto H. Chalcogenide fiber bundle for 3D spectroscopy[J]. Infrared Physics & Technology, 1997, 38(2): 93-99.

[6] Bernier M, Fortin V, Caron N, et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 2013, 38(2): 127-129.

[7] Limpert J, Liem A, Reich M, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Optics Express, 2004, 12(7): 1313-1319.

[8] Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Optics Express, 2003, 11(7): 818-823.

[9] Monro T M, Warren-Smith S, Schartner E P, et al. Sensing with suspended-core optical fibers[J]. Optical Fiber Technology, 2010, 16(6): 343-356.

[10] 汪翠, 戴世勋, 张培晴, 等. 基于硫系玻璃光纤的红外超连续谱的研究进展[J]. 激光与光电子学进展, 2015, 52(3): 030001.

    Wang Cui, Dai Shixun, Zhang Peiqing, et al. Research progress of infrared supercontinuum generation in chalcogenide glass fibers[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030001.

[11] Troles J, Shiryaev V, Churbanov M, et al. GeSe4 glass fibres with low optical losses in the mid-IR[J]. Optical Materials, 2009, 32(1): 212-215.

[12] Churbanov M F, Snopatin G E, Shiryaev V S, et al. Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics[J]. Journal of Non-Crystalline Solids, 2011, 357(11-13): 2352-2357.

[13] Smektala F, Le Foulgoc K, Le Neindre L, et al. TeX-glass infrared optical fibers delivering medium power from a CO2 laser[J]. Optical Materials, 1999, 13(2): 271-276.

[14] Mossadegh R, Sanghera J S, Schaafsma D, et al. Fabrication of single-mode chalcogenide optical fiber[J]. Journal of Lightwave Technology, 1998, 16(2): 214-217.

[15] Tao G, Shabahang S, Banaei E H, et al. Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers[J]. Optics Letters, 2012, 37(13): 2751-2753.

[16] Lee E T Y, Taylor E R M. Two-die assembly for the extrusion of glasses with dissimilar thermal properties for fibre optic preforms[J]. Journal of Materials Processing Technology, 2007, 184(1-3): 325-329.

[17] Savage S D, Miller C A, Furniss D, et al. Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers[J]. Journal of Non-Crystalline Solids, 2008, 354(29): 3418-3427.

[18] Liao M, Chaudhari C, Qin G, et al. Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity[J]. Optics Express, 2009, 17(24): 21608-21614.

[19] 朱敏鸣, 王训四, 徐会娟, 等. 新型远红外Ge-Ga-Te-KBr硫系玻璃性能研究[J]. 光子学报, 2014, 43(6): 0616001.

    Zhu Minming, Wang Xunsi, Xu Huijuan, et al. Novel Ge-Ga-Te-KBr far-infrared-transmitting chalcogenide glasses system[J]. Acta Photonica Sinica, 2014, 43(6): 0616001.

[20] 翟诚诚, 张斌, 祁思胜, 等. 柔性硫系玻璃光纤传像束的制备及性能研究[J]. 光学学报, 2015, 35(8): 0806005.

    Zhai Chengcheng, Zhang Bin, Qi Sisheng, et al. Fabrication and properties of flexible chalcogenide fiber image bundles[J]. Acta Optica Sinica, 2015, 35(8): 0806005.

[21] Lafond C, Couillard J F, Delarosbil J L, et al. Recent improvements on mid-IR chalcogenide optical fibers[C]. Proceedings of SPIE, Infrared Technology and Applications, 2014, 9070: 90701C.

[22] Katsuyama T, Satoh S, Matsumura H. Scattering loss characteristics of selenide-based chalcogenide glass optical fibers[J]. Journal of Applied Physics, 1992, 71(9): 4132-4135.

[23] 祝清德, 王训四, 张培晴, 等. 硫系As2S3悬吊芯光纤制备及其光谱性能研究[J]. 光学学报, 2015, 35(12): 1206004.

    Zhu Qingde, Wang Xunsi, Zhang Peiqing, et al. Fabrication and optical properties of chalcogenide As2S3 suspended-core fiber[J]. Acta Optica Sinica, 2015, 35(12): 1206004.

[24] Toupin P, Brilland L, Renversez G, et al. All-solid all-chalcogenide microstructured optical fiber[J]. Optics Express, 2013, 21(12): 14643-14648.

[25] Bernier M, Asatryan K, Vallée R, et al. Second-order Bragg gratings in single-mode chalcogenide fibres[J]. Quantum Electronics, 2011, 41(5): 465-468.

刘硕, 唐俊州, 刘自军, 江岭, 吴波, 密楠, 王训四, 赵浙明, 聂秋华, 戴世勋, 潘章豪. 低损耗硫系玻璃光纤的挤压制备及其性能研究[J]. 光学学报, 2016, 36(10): 1006002. Liu Shuo, Tang Junzhou, Liu Zijun, Jiang Ling, Wu Bo, Mi Nan, Wang Xunsi, Zhao Zheming, Nie Qiuhua, Dai Shixun, Pan Zhanghao. Fabrication and Properties of Low-Loss Chalcogenide Optical Fiber Based on the Extrusion Method[J]. Acta Optica Sinica, 2016, 36(10): 1006002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!