中国激光, 2013, 40 (5): 0517001, 网络出版: 2013-05-08   

基于腔内电光调制的染料激光频率噪声压制

Frequency Noise Suppression of a Dye Laser Based on Intracavity Electro-Optic Modulator
刘芳 1,2,*王春 1,2李刘锋 1,3陈李生 1,3
作者单位
1 中国科学院武汉物理与数学研究所, 湖北 武汉 430071
2 中国科学院大学, 北京 100049
3 中国科学院原子频标重点实验室, 湖北 武汉 430071
摘要
采用Pound-Drever-Hall锁频方法对连续波可调谐染料激光器的频率噪声进行了压制。设计和组装了一种小型腔内电光调制器作为快速频率调整的执行机构。详细讨论了腔内电光调制器的设计参数并给出了两种常用电光晶体的机械谐振的测量结果。以该电光调制器和激光腔镜上的压电陶瓷作为频率反馈控制的执行机构将染料激光锁定在一个法布里珀罗腔上。当只采用压电陶瓷时激光频率噪声在100 Hz附近被降低了3个数量级,进一步加入电光调制控制环路后,在100 Hz到50 kHz范围内激光频率噪声能进一步减小4/5。经过频率噪声的压制后激光光谱线宽从自由运转时的2.2 MHz降低到了10 kHz。
Abstract
The frequency noise of a continuous-wave tunable dye laser is suppressed by using the Pound-Drever-Hall frequency locking method. To cope with relatively large high-frequency components in the dye laser frequency noise, a compact intracavity electro-optic modulator that serves as a fast frequency actuator is designed and assembled. The design parameters of the modulator are discussed in detail and the experimental data on the mechanical resonances of two commonly used electro-optic crystals are given. The dye laser is locked to a Fabry-Perot cavity by using the intracavity electro-optic modulator and piezoelectric transducers installed on the cavity mirrors. With only piezoelectric actuators the laser frequency noise is reduced by three orders of magnitude at 100 Hz and the noise is further suppressed by four-fifths from 100 Hz to 50 kHz with a combination of piezoelectric actuators and the intracavity electro-optic modulator. With the suppression of frequency noise implemented, the 2.2 MHz free-running laser linewidth is reduced to 10 kHz.
参考文献

[1] B. C. Young, F. C. Cruz, W. M. Itano et al.. Visible lasers with subhertz linewidths[J]. Phys. Rev. Lett., 1999, 82(19): 3799~3802

[2] J. Hough, D. Hils, M. D. Rayman et al.. Dye-laser frequency stabilization using optical resonators[J]. Appl. Phys. B, 1984, 33(3): 179~185

[3] J. Heimcke, S. A. Lee, J. L. Hall. Dye laser spectrometer for ultrahigh spectral resolution: design and performance[J]. Appl. Opt., 1982, 21(9): 1686~1694

[4] J. Ye, L. S. Ma, J. L. Hall. Molecular iodine clock[J]. Phys. Rev. Lett., 2001, 87(27): 270801

[5] A. Arie, S. Schiller, E. K. Gustafson et al.. Absolute frequency stabilization of diode-pumped NdYAG lasers to hyperfine transitions in molecular iodine[J]. Opt. Lett., 1992, 17(17): 1204~1206

[6] 臧二军, 曹建平, 李烨 等. 532 nm碘分子光频标[J]. 中国激光, 2007, 34(2): 203~208

    Zang Erjun, Cao Jianping, Li Ye et al.. 532 nm iodine molecular optical frequency standards[J]. Chinese J. Lasers, 2007, 34(2): 203~208

[7] L. S. Chen, W. Y. Cheng, J. Ye. Hyperfine interactions and perturbation effects in the B0+u(3Πu) state of 127I2[J]. J. Opt. Soc. Am. B, 2004, 21(4): 820~832

[8] J. P. Zhai, I. L. Li, S. C. Ruan et al.. Controlling the alignment of neutral iodine molecules in the elliptical channels of AlPO4-11 crystals[J]. Appl. Phys. Lett., 2008, 92(4): 043117

[9] W. H. Guo, D. D. Wang, J. M. Hu et al.. Raman spectroscopy of iodine molecules trapped in zeolite crystals[J]. Appl. Phys. Lett., 2011, 98(4): 043105

[10] J. M. Hu, D. D. Wang, W. H. Guo et al.. Reversible control of the orientation of iodine molecules inside the AlPO4-11 crystals[J]. J. Phys. Chem., 2012, 116(7): 4423~4430

[11] D. J. Mann, M. D. Halls. Water alignment and proton conduction inside carbon nanotubes[J]. Phys. Rev. Lett., 2003, 90(19): 195503

[12] R. W. P. Drever, J. L. Hall, F. V. Kowalski et al.. Laser phase and frequency stabilization using an optical resonator[J]. Appl. Phys. B, 1983, 31(2): 97~105

[13] D. D. Hudson, K. W. Holman, R. J. Jones et al.. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator[J]. Opt. Lett., 2005, 30(21): 2948~2950

[14] 常冬霞, 刘侠, 王宇 等. 连续波Nd:YVO4/LBO稳频倍频红光全固态激光器[J]. 中国激光, 2008, 35(3): 323~327

    Chang Dongxia, Liu Xia, Wang Yu et al.. All-solid-state CW intracavity frequency-doubled and frequency-stabilized Nd:YVO4/LBO red laser[J]. Chinese J. Lasers, 2008, 35(3): 323~327

[15] M. Hyodo, K. S. Abedin, N. Onodera. Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal[J]. Opt. Commun., 1999, 171(1): 159~169

[16] F. Liu, C. Wang, L. F. Li et al.. Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator[J]. Opt. Laser Technol., 2013, 45: 775~781

[17] A. Yariv. Quantumn Electronics[M]. New York: Wiley, 1989

[18] Liufeng Li, Fang Liu, Chun Wang et al.. Measurement and control of residual amplitude modulation in optical phase modulation[J]. Rev. Sci. Instrum., 2012, 83(4): 043111

[19] 陈玉华, 蒋燕义, 毕志毅 等. 利用法布里珀罗腔抑制电光相位调制中的剩余幅度调整[J]. 光学学报, 2007, 27(10): 1877~1882

    Chen Yuhua, Jiang Yanyi, Bi Zhiyi et al.. Suppression of residual amplitude modulation in electro-optical phase modulators using Fabry-Perot cavity[J]. Acta Optica Sinica, 2007, 27(10): 1877~1882

[20] G. D. Domenico, S. Schilt, P. Thomann. Simple approach to the relation between laser frequency noise and laser line shape[J]. Appl. Opt., 2010, 49(25): 4801~4807

刘芳, 王春, 李刘锋, 陈李生. 基于腔内电光调制的染料激光频率噪声压制[J]. 中国激光, 2013, 40(5): 0517001. Liu Fang, Wang Chun, Li Liufeng, Chen Lisheng. Frequency Noise Suppression of a Dye Laser Based on Intracavity Electro-Optic Modulator[J]. Chinese Journal of Lasers, 2013, 40(5): 0517001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!