Opto-Electronic Advances, 2018, 1 (4): 180007, Published Online: Mar. 19, 2019  

Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures

Author Affiliations
School of Physics, State Key Lab for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
Copy Citation Text

Zhixin Liu, Meiling Jiang, Yanglin Hu, Feng Lin, Bo Shen, Xing Zhu, Zheyu Fang. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures[J]. Opto-Electronic Advances, 2018, 1(4): 180007.

References

[1] T Coenen, N M Haegel. Cathodoluminescence for the 21st century: Learning more from light. Appl Phys Rev, 2017, 4: 031103.

[2] D W Pohl, U C Fischer, U T Dürig. Scanning near-field optical microscopy (Snom). J Microsc, 1988, 152: 853-861.

[3] J Schieber, D Krinsley, L Riciputi. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature, 2000, 406: 981-985.

[4] G Pratesi, A L Giudice, S Vishnevsky, C Manfredotti, C Cipriani. Cathodoluminescence investigations on the Popigai, Ries, and Lappajarvi impact diamonds. Am Mineral, 2003, 88: 1778-1787.

[5] S J Pennycook. Investigating the optical properties of dislocations by scanning transmission electron microscopy. Scanning, 2008, 30: 287-298.

[6] K Watanabe, T Nagata, Y Wakayama, T Sekiguchi, R Erdélyi, et al.. Band-Gap Deformation Potential and Elasticity Limit of Semiconductor Free-Standing Nanorods Characterized in Situ by Scanning Electron Microscope-Cathodoluminescence Nanospectroscopy. ACS Nano, 2015, 9: 2989-3001.

[7] B J M Brenny, T Coenen, A Polman. Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. J Appl Phys, 2014, 115: 244307.

[8] K Storm, F Halvardsson, M Heurlin, D Lindgren, A Gustafsson, et al.. Spatially resolved Hall effect measurement in a single semiconductor nanowire. Nat Nanotechnol, 2012, 7: 718-722.

[9] H Niioka, T Furukawa, M Ichimiya, M Ashida, T Araki, et al.. Multicolor Cathodoluminescence Microscopy for Biological Imaging with Nanophosphors. Appl Phys Express, 2011, 4: 112402.

[10] W A Barnett, M L H Wise, E C Jones. Cathodoluminescence of biological molecules, macromolecules and cells. J Microsc, 1975, 105: 299-303.

[11] T Coenen, B J M Brenny, E J Vesseur, A Polman. Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength resolution. MRS Bull, 2015, 40: 359-365.

[12] M Kociak, L F Zagonel. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy, 2017, 176: 112-131.

[13] J Gotze. Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Anal Bioanal Chem, 2002, 374: 703-708.

[14] R Sauer, H Sternschulte, S Wahl, K Thonke, T R Anthony. Revised fine splitting of excitons in diamond. Phys Rev Lett, 2000, 84: 4172-4175.

[15] S Koizumi, K Watanabe, M Hasegawa, H Kanda. Ultraviolet emission from a diamond pn junction. Science, 2001, 292: 1899-1901.

[16] G G Li, D L Geng, M M Shang, C Peng, Z Y Cheng, et al.. Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors. J Mater Chem, 2011, 21: 13334.

[17] P R Edwards, R W Martin. Cathodoluminescence nano-characterization of semiconductors. Semicond Sci Tech, 2011, 26: 064005.

[18] B Dierre, X L Yuan, T Sekiguchi. Low-energy cathodoluminescence microscopy for the characterization of nanostructures. Sci Technol Adv Mater, 2010, 11: 043001.

[19] A Leto, G Pezzotti. Cathodoluminescence study of off-stoichiometry and residual stresses in advanced dielectrics and related devices. Phys Status Solidi A, 2011, 208: 1119-1126.

[20] T Y Zhai, X S Fang, Y Bando, B Dierre, B D Liu, et al.. Characterization, cathodoluminescence, and field-emission properties of morphology-tunable CdS micro/nanostructures. Adv Funct Mater, 2009, 19: 2423-2430.

[21] U K Gautam, L S Panchakarla, B Dierre, X S Fang, Y Bando, et al.. Solvothermal Synthesis, Cathodoluminescence, and Field-Emission Properties of Pure and N-Doped ZnO Nanobullets. Adv Funct Mater, 2009, 19: 131-140.

[22] B G Yacobi, D B Holt. Cathodoluminescence scanning electron microscopy of semiconductors. J Appl Phys, 1986, 59: R1-R24.

[23] T V Shubina, S V Ivanov, V N Jmerik, D D Solnyshkov, V A Vekshin, et al.. Mie resonances, infrared emission, and the band gap of InN. Phys Rev Lett, 2004, 92: 117407.

[24] L Schue, B Berini, A C Betz, B Placais, F Ducastelle, et al.. Dimensionality effects on the luminescence properties of hBN. Nanoscale, 2016, 8: 6986-6993.

[25] E J R Vesseur, J Aizpurua, T Coenen, A Reyes-Coronado, P E Batson, et al.. Plasmonic excitation and manipulation with an electron beam. MRS Bull, 2012, 37: 752-760.

[26] W L Barnes, A Dereux, T W Ebbesen. Surface plasmon subwavelength optics. Nature, 2003, 424: 824-830.

[27] J B Pendry, L Martin-Moreno, F J Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 2004, 305: 847-848.

[28] J Nelayah, M Kociak, O Stéphan, F J García de Abajo, M Tencé, et al.. Mapping surface plasmons on a single metallic nanoparticle. Nat Phys, 2007, 3: 348-353.

[29] H Choi, D F P Pile, S Nam, G Bartal, X Zhang. Compressing surface plasmons for nano-scale optical focusing. Opt Express, 2009, 17: 7519-7524.

[30] J A Dionne, L A Sweatlock, H A Atwater, A Polman. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys Rev B, 2006, 73: 035407.

[31] N Yamamoto, S Bhunia, Y Watanabe. Polarized cathodoluminescence study of InP nanowires by transmission electron microscopy. Appl Phys Lett, 2006, 88: 153106.

[32] E J R Vesseur, T Coenen, H Caglayan, N Engheta, A Polman. Experimental verification of n=0 structures for visible light. Phys Rev Lett, 2013, 110: 013902.

[33] A C Narvaez, I G C Weppelman, R J Moerland, N Liv, A C Zonnevylle, et al.. Cathodoluminescence Microscopy of nanostructures on glass substrates. Opt Express, 2013, 21: 29968-29978.

[34] A Aubry, D Y Lei, A I Fernandez-Dominguez, Y Sonnefraud, S A Maier, et al.. Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett, 2010, 10: 2574-2579.

[35] C Ropers, C C Neacsu, T Elsaesser, M Albrecht, M B Raschke, et al.. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett, 2007, 7: 2784-2788.

[36] Q Cao, P Lalanne. Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett, 2002, 88: 057403.

[37] M V Bashevoy, F Jonsson, K F MacDonald, Y Chen, N I Zheludev. Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution. Opt Express, 2007, 15: 11313-11320.

[38] E J R Vesseur, R de Waele, M Kuttge, A Polman. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett, 2007, 7: 2843-2846.

[39] M Kuttge, F J G de Abajo, A Polman. Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett, 2010, 10: 1537-1541.

[40] C E Hofmann, E J R Vesseur, L A Sweatlock, H J Lezec, F J G de Abajo, et al.. Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence. Nano Lett, 2007, 7: 3612-3617.

[41] P Chaturvedi, K H Hsu, A Kumar, K H Fung, J C Mabon, et al.. Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. ACS Nano, 2009, 3: 2965-2974.

[42] J K Day, N Large, P Nordlander, N J Halas. Standing wave plasmon modes interact in an antenna-coupled nanowire. Nano Lett, 2015, 15: 1324-1330.

[43] F B Arango, T Coenen, A F Koenderink. Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval. ACS Photonics, 2014, 1: 444-453.

[44] H Acar, T Coenen, A Polman, L K Kuipers. Dispersive Ground Plane Core-Shell Type Optical Monopole Antennas Fabricated with Electron Beam Induced Deposition. ACS Nano, 2012, 6: 8226-8232.

[45] A L Koh, K Bao, I Khan, W E Smith, G Kothleitner, et al.. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano, 2009, 3: 3015-3022.

[46] V Flauraud, G D Bernasconi, J Butet, D T L Alexander, O J F Martin, et al.. Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy. ACS Nano, 2017, 11: 3485-3495.

[47] Q Sun, K Ueno, H Yu, A Kubo, Y Matsuo, et al.. Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light-Sci Appl, 2013, 2: e118-e118.

[48] Q Sun, H Yu, K Ueno, A Kubo, Y Matsuo, et al.. Dissecting the Few-Femtosecond Dephasing Time of Dipole and Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy. ACS Nano, 2016, 10: 3835-3842.

[49] M Toth, M R Phillips. Monte Carlo modeling of cathodoluminescence generation using electron energy loss curves. Scanning, 1998, 20: 425-432.

[50] J M Titchmarsh, G R Booker, W Harding, D R Wight. Carrier recombination at dislocations in epitaxial gallium phosphide layers. J Mater Sci Mater Med, 1977, 12: 341-346.

[51] K Nakagawa, K Maeda, S Takeuchi. Observation of dislocations in cadmium telluride by cathodoluminescence microscopy. Appl Phys Lett, 1979, 34: 574.

[52] H A Zarem, P C Sercel, J A Lebens, L E Eng, A Yariv, et al.. Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathodoluminescence. Appl Phys Lett, 1989, 55: 1647-1649.

[53] M Merano, S Sonderegger, A Crottini, S Collin, P Renucci, et al.. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature, 2005, 438: 479-482.

[54] H L Chen, C Himwas, A Scaccabarozzi, P Rale, F Oehler, et al.. Determination of n-Type Doping Level in Single GaAs Nanowires by Cathodoluminescence. Nano Lett, 2017, 17: 6667-6675.

[55] V M Kaganer, K K Sabelfeld, O Brandt. Piezoelectric field, exciton lifetime, and cathodoluminescence intensity at threading dislocations in GaN{0001}. Appl Phys Lett, 2018, 112: 122101.

[56] G Pozina, R Ciechonski, Z X Bi, L Samuelson, B Monemar. Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence. Appl Phys Lett, 2015, 107: 251106.

[57] U Jahn, J Miguel-Sánchez, T Flissikowski, H T Grahn, R Hey, et al.. Carrier diffusion lengths in (In, Ga)(As, N)/GaAs quantum wells studied by spatially resolved cathodoluminescence. Phys Status Solidi C, 2006, 3: 627-630.

[58] N Pauc, M R Phillips, V Aimez, D Drouin. Carrier recombination near threading dislocations in GaN epilayers by low voltage cathodoluminescence. Appl Phys Lett, 2006, 89: 161905.

[59] U Jahn, J Ristić, E Calleja. Cathodoluminescence spectroscopy and imaging of GaN∕(Al, Ga)N nanocolumns containing quantum disks. Appl Phys Lett, 2007, 90: 161117.

[60] Z W Li, Y Li, T Y Han, X L Wang, Y Yu, et al.. Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling. ACS Nano, 2017, 11: 1165-1171.

[61] Z W Li, Y D Xiao, Y J Gong, Z P Wang, Y M Kang, et al.. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano, 2015, 9: 10158-10164.

[62] S Zu, B W Li, Y J Gong, Z W Li, P M Ajayan, et al.. Active control of plasmon-exciton coupling in MoS2-Ag hybrid nanostructures. Adv Opt Mater, 2016, 4: 1463-1469.

[63] Y Li, Z W Li, C Chi, H Y Shan, L S Zheng, et al.. Plasmonics of 2D Nanomaterials: Properties and Applications. Adv Sci (Weinh), 2017, 4: 1600430.

[64] B W Li, S Zu, J D Zhou, Q Jiang, B W Du, et al.. Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers. ACS Nano, 2017, 11: 9720-9727.

[65] Z W Li, R Q Ye, R Feng, Y M Kang, X Zhu, et al.. Graphene Quantum Dots Doping of MoS2 Monolayers. Adv Mater, 2015, 27: 5235-5240.

[66] Y M Kang, S Najmaei, Z Liu, Y J Bao, Y M Wang, et al.. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv Mater, 2014, 26: 6467-6471.

[67] S J Zheng, J K So, F C Liu, Z Liu, N Zheludev, et al.. Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Lett, 2017, 17: 6475-6480.

[68] J Becker, A Trügler, A Jakab, U Hohenester, C S nnichsen. The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing. Plasmonics, 2010, 5: 161-167.

[69] K Y Jung, F L Teixeira, R M Reano. Au/SiO2 Nanoring Plasmon Waveguides at Optical Communication Band. J Lightwave Technol, 2007, 25: 2757-2765.

[70] M W Knight, L F Liu, Y M Wang, L Brown, S Mukherjee, et al.. Aluminum plasmonic nanoantennas. Nano Lett, 2012, 12: 6000-6004.

[71] A Christ, S G Tikhodeev, N A Gippius, J Kuhl, H Giessen. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett, 2003, 91: 183901.

[72] T Y Han, S Zu, Z W Li, M L Jiang, X Zhu, et al.. Reveal and Control of Chiral Cathodoluminescence at Subnanoscale. Nano Lett, 2018, 18: 567-572.

[73] S Zu, Y J Bao, Z Y Fang. Planar plasmonic chiral nanostructures. Nanoscale, 2016, 8: 3900-3905.

[74] S Zu, T Han, M Jiang, F Lin, X Zhu, et al.. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures. ACS Nano, 2018, 12: 3908-3916.

[75] T Coenen, E J R Vesseur, A Polman, A F Koenderink. Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett, 2011, 11: 3779-3784.

[76] Y Estrin, D H Rich, A V Kretinin, H Shtrikman. Influence of metal deposition on exciton-surface plasmon polariton coupling in GaAs/AlAs/GaAs core-shell nanowires studied with time-resolved cathodoluminescence. Nano Lett, 2013, 13: 1602-1610.

Zhixin Liu, Meiling Jiang, Yanglin Hu, Feng Lin, Bo Shen, Xing Zhu, Zheyu Fang. Scanning cathodoluminescence microscopy: applications in semiconductor and metallic nanostructures[J]. Opto-Electronic Advances, 2018, 1(4): 180007.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!