中国激光, 2017, 44 (3): 0306003, 网络出版: 2017-03-08   

地球静止轨道空间星载激光通信光学天线热控技术

Thermal Control Technology for Optical Antenna in Geostationary Orbit Space Satellite-Borne Laser Communication
作者单位
1 中国空间技术研究院通信卫星事业部, 北京 100094
2 哈尔滨工业大学可调谐激光技术国家重点实验室, 黑龙江 哈尔滨 150001
摘要
光学天线作为空间激光通信系统中的核心组件,应具有较好的温度场稳定性和均匀性。较大的天线口径和地球静止轨道空间外热流的复杂聚变,增大了天线温度场热控技术的难度。根据光学天线的构型特点和外热流的变化规律,基于光机热一体化协同设计,将空间高效热防护技术与光学镜面辅助热控技术相结合,实现了对大口径光通信天线温度场的稳定性与均匀性的长期精稳控制,并通过热实验进行验证。实验结果表明,强日照期对天线采取避光策略时,满足光通信天线温度场指标要求的时长大于14.3 h/d,温度稳定控制在21.4~26.2 ℃范围内,主镜自身热差不大于1.3 ℃,主镜与次镜之间的热差不大于3.8 ℃,这些结果均高于稳定性与均匀性的指标要求。
Abstract
As the key component of space laser communication systems, optical antenna is required to have good stability and uniformity for temperature field. The thermal control technology for temperature field of antenna is facing more challenge owing to the large antenna aperture and the complex fusion of external heat flux in geostationary orbit space. According to the characteristics of antenna configuration and the discipline of external heat flux variation, the long-term fine stability control for the stability and the uniformity of antenna temperature field is achieved in large diameter optical communication when we combine the space efficient heat protection technology with the optical mirror aided thermal control technology, which is based on the design for optical, mechanical and thermal design. The proposed method is verified by thermal test. Experiment results show that in the case that the antenna is taken strategy to avoid direct sun, the duration is up to 14.3 h/d, which satisfies the request for antenna temperature. The temperature is controlled stably in the range of 21.4-26.2 ℃. The thermal difference of the primary mirror itself is not larger than 1.3 ℃, and the thermal difference between the primary mirror and the secondary mirror is not larger than 3.8 ℃. These results are larger than the required indexes of stability and uniformity.
参考文献

[1] Nilsson O. Fundamental limits and possibilities for future telecommunications[J]. IEEE Communications Magazine, 2001, 39(5): 164-167.

[2] Chan V W S. Optical space communications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 959-975.

[3] Garaymovich N P, Grigoriev V N, Huppenen A P, et al. Free-space laser communication systems: Internationally and in Russia[C]. SPIE, 2001, 4354: 197-213.

[4] Gregory M, Heine F, Kmpfner H, et al. TESAT laser communication terminal performance results on 5.6 Gbit coherent inter satellite and satellite to ground links[C]. International Conference on Space Optics, 2010, 4: 8.

[5] Toyoshima M. Trends in laser communications in space[J]. Space Japan Review, 2010, 70: 1-6.

[6] Segato E, Deppo D V, Debei S, et al. Method for studying the effects of thermal deformations on optical systems for space application[J]. Applied Optics, 2011, 50(18): 2836-2845.

[7] 李晓峰, 汪 波, 胡 渝. 在轨运行热环境下的天线镜面热变形对空地激光通信链路的影响[J]. 宇航学报, 2005, 26(5): 581-585.

    Li Xiaofeng, Wang Bo, Hu Yu. Influence of mirror thermal distortion in thermosphere to space-to-ground laser communication links[J]. Journal of Astronautics, 2005, 26(5): 581-585.

[8] 宋义伟, 于思源, 谭立英, 等. 空间温度场对平面反射镜面形影响研究[J]. 宇航学报, 2010, 31(3): 868-874.

    Song Yiwei, Yu Siyuan, Tan Liying, et al. The effects of temperature distribution in space on the figure of reflectors[J]. Journal of Astronautics, 2010, 31(3): 868-874.

[9] 谭立英, 宋义伟, 马 晶, 等. 温度对潜望式激光通信终端SiC反射镜性能影响[J]. 强激光与粒子束, 2010, 22(11): 2545-2550.

    Tan Liying, Song Yiwei, Ma Jing, et al. Effects of temperature distribution on performance of SiC reflectors in periscopic laser communication terminals[J]. High Power Laser and Particle Beams, 2010, 22 (11): 2545-2550.

[10] 胡帼杰, 刘百麟, 周佐新, 等. 太阳窗光热特性对光通信天线热稳定性影响分析[J]. 中国激光, 2016, 43(7): 0706002.

    Hu Guojie, Liu Bailin, Zhou Zuoxin, et al. Impact analysis of solar window and its optical and thermal properties on the laser communication antenna[J]. Chinese J Lasers, 2016, 43(7): 0706002.

[11] 孟恒辉, 谭沧海, 耿利寅, 等. 激光通信终端主体热设计与热分析[J]. 北京航空航天大学学报, 2013, 39(9): 1222-1227.

    Meng Henghui, Tan Canghai, Geng Liyin, et al. Thermal control design and analysis for laser communication terminal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9): 1222-1227.

[12] 孟恒辉, 耿利寅, 李国强. 激光通信器热设计与热实验[J]. 红外与激光工程, 2014, 43(7): 2295-2299.

    Meng Henghui, Geng Liyin, Li Guoqiang. Thermal control design and experiment for laser communication equipment[J]. Infrared and Laser Engineering, 2014, 43(7): 2295-2299.

[13] 高 瞻, 张一波. 自由空间光通信系统中的光学天线系统[J]. 现代电信科技, 2003(3): 24-27.

    Gao Zhan, Zhang Yibo. Optical antenna system in free space optical communication system[J]. Modern Sciecne & Technology of Telecommunications, 2003(3): 24-27.

刘百麟, 周佐新, 李健, 谭立英. 地球静止轨道空间星载激光通信光学天线热控技术[J]. 中国激光, 2017, 44(3): 0306003. Liu Bailin, Zhou Zuoxin, Li Jian, Tan Liying. Thermal Control Technology for Optical Antenna in Geostationary Orbit Space Satellite-Borne Laser Communication[J]. Chinese Journal of Lasers, 2017, 44(3): 0306003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!