红外与激光工程, 2019, 48 (1): 0126002, 网络出版: 2019-04-02  

遥感面阵凝视图像并行超分辨重建方法

Simultaneous super-resolution reconstruction based on plane array staring remote sensing images
作者单位
1 中国科学院西安光学精密机械研究所, 陕西 西安 710119
2 中国科学院大学, 北京 100049
摘要
遥感面阵凝视成像系统可以得到同一场景的多幅图像, 研究者常利用这一特点进行多幅图像超分辨重建, 以提高遥感图像空间分辨率。但是这类研究往往将超分辨过程独立出来, 很少结合成像系统的几何参数优化超分辨重建模型。因此, 对成像姿态影响图像不同方向上分辨率的问题进行了分析, 提出了基于姿态角的各向异性模糊估计, 使退化模型更加准确。同时, 为了进一步精确面阵凝视成像系统超分辨重建中的匹配参数估计, 提高由系统引起的全局初始匹配误差的包容性, 基于最大后验法提出并行优化超分辨率图像和匹配参数的方法。算法充分利用成像过程信息并实时优化匹配参数, 实验结果证明与现有方法相比, 不仅可以得到细节信息更丰富, 更易于人眼观察的遥感图像, 并且均方误差降低0.3倍左右, 信息熵平均提高1.2。
Abstract
A group of images for one scene can be obtained by plane array staring remote sensing system. So researchers often use multi-frame image super-resolution reconstruction to produce images with higher spatial resolution. However, most of reports regard super-resolution reconstruction as an isolated part ignoring that geometric parameters of imaging system have the ability to optimize the reconstruction model. Therefore, the influence of attitude angle on resolution changes in different directions was analyzed particularly. Meanwhile, the corresponding anisotropic blur estimation was presented to improve the accuracy of discrimination model. Because of the matching parameter as a significant role in super-resolution reconstruction, for improving the accuracy of the matching parameter estimation and decreasing the global initial matching error caused by the system, the algorithm of simultaneously optimizing super-resolution image and matching parameters based on maximum a posteriori estimation was proposed. This method takes advantage of the useful information of imaging system and improve the robustness of matching parameter by synchronous optimizing. The experimental results demonstrate that the method of our paper is better than existed algorithms in detail information and definition observing by eyes. In addition, the mean square error was reduced 0.3 times, and the information entropy was increased 1.2 in average.
参考文献

[1] Xie Q, Yao G, Liu P. Super-resolution Reconstruction of Satellite Video Images based on Interpolation Method[M]. Amsterdam, Netherlands: Elsevier Science Publishers, 2017.

[2] 张智, 林凌, 张建兵, 等. 太赫兹成像质量提升方法[J]. 红外与激光工程, 2017, 46(11): 1126002.

    Zhang Zhi, Lin Ling, Zhang Jianbing, et al. Improvement method for terahertz imaging quality[J]. Infrared and Laser Engineering, 2017, 46(11): 1126002. (in Chinese)

[3] 武奕楠, 李国宁, 张柯, 等. 基于同名点追踪的空间相机成像拼接配准模型[J]. 红外与激光工程, 2016, 45(3): 0326002.

    Wu Yinan, Li Guoning, Zhang Ke, et al. Registration model based on homologous points tracking of space camera assembly imaging[J]. Infrared and Laser Engineering, 2016, 45(3): 0326002. (in Chinese)

[4] 王新征, 卜雄洙, 于靖. 结合多分辨率修正曲率配准的层间插值[J]. 光学 精密工程, 2016, 24(5): 1224-1231.

    Wang Xinzheng, Bu Xiongzhu Yu Jing. Slice interpolation on multilevel modified curvature-based registration[J]. Optics and Precision Engineering, 2016, 24(5): 1224-1231. (in Chinese)

[5] 张磊, 杨建峰, 薛彬, 等. 嫦娥一号卫星CCD立体相机影像超分辨率重建算法[J]. 红外与激光工程, 2012, 41(2): 404-408.

    Zhang Lei, Yang Jianfeng, Xue Bin, et al. Super-resolution reconstruction of Chang′e-1 satellite CCD stereo camera images[J]. Infrared and Laser Engineering, 2012, 41(2):404-408. (in Chinese)

[6] 刘薇, 高慧婷, 曹世翔, 等. “高分四号”卫星面阵凝视相机超分辨技术[J]. 航天返回与遥感, 2016, 37(4): 87-95.

    Liu Wei, Gao Huiting, Cao Shixiang, et al. Study on super resolution of GF-4 satellite staring plane array camera[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(4): 87-95. (in Chinese)

[7] Zhang H, Yang Z, Zhang L, et al. Super-resolution reconstruction for multi-angle remote sensing images considering resolution differences[J]. Remote Sensing, 2014, 6(1): 637-657.

[8] 齐冰洁, 刘金国, 张博研, 等. 高分辨率遥感图像SIFT和SURF算法匹配性能研究[J]. 中国光学, 2017, 10(3): 331-339.

    Qi Binjie, Liu Jinguo, Zhang Boyan, et al. Research on matching performance of SIFT and SURF algorithms for high resolution remote sensing image[J]. Chinese Optics, 2017, 10(3): 331-339. (in Chinese)

[9] Pickup L C. Machine Learning in Multi-frame Image Super-resolution[D]. Oxford, UK: Oxford University, 2007.

[10] 郝建坤, 黄玮, 刘军, 等. 空间变化PSF非盲去卷积图像复原法综述[J]. 中国光学, 2016, 9(1): 41-50.

    Hao Jiankun, Huang Wei, Liu Jun, et al. Review of non-blind deconvolution image restoration based on spatially-varying PSF[J]. Chinese Optics, 2016, 9(1): 41-50. (in Chinese)

[11] 谢伟. 多帧影像超分辨率复原重建关键技术研究[D]. 武汉: 武汉大学, 2010.

    Xie Wei. Research on the key technologies of multi-frame super-resolution image reconstruction[D]. Wuhan: Wuhan University, 2010. (in Chinese)

[12] 关新. 高分辨率遥感卫星隔振与姿态控制一体化设计[D]. 北京: 清华大学, 2012.

    Guan Xin. Integrated design of vibration isolation and attitude control for high resolution remote sensing satellites[D]. Beijing: Tsinghua University, 2012. (in Chinese)

[13] 智喜洋, 侯晴宇, 王少游. 基于灰度线性建模的亚像素图像抖动量计算[J]. 光学 精密工程, 2016, 24(1): 195-202.

    Zhi Xiyang, Hou Qingyu, Wang Shaoyou. Estimation of image sub-pixel jitter based on linear model of image gray level[J]. Optics and Precision Engineering, 2016, 24(1): 195-202. (in Chinese)

[14] Yang R, Liu Z H, Yang T, et al. Efficient point matching under uneven and dramatic illumination changes[J]. Journal of Electronic Imaging, 2017, 26(1): 013001.

杨蕊, 刘朝晖, 折文集. 遥感面阵凝视图像并行超分辨重建方法[J]. 红外与激光工程, 2019, 48(1): 0126002. Yang Rui, Liu Zhaohui, She Wenji. Simultaneous super-resolution reconstruction based on plane array staring remote sensing images[J]. Infrared and Laser Engineering, 2019, 48(1): 0126002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!