红外与毫米波学报, 2015, 34 (3): 340, 网络出版: 2015-08-25  

面向宽带光隔离器的一维磁光子晶体结构

One-dimensional magneto-photonic crystals with flat-top responses for Magneto-optical isolators
费宏明 1,2,*武建加 1,2刘欣 1,2陈智辉 1,2杨毅彪 1,2
作者单位
1 太原理工大学 新型传感器与智能控制教育部重点实验室, 山西 太原 030024
2 太原理工大学物理与光电工程学院, 山西 太原 030024
摘要
文章采用4×4传输矩阵法研究了两种一维磁光子晶体结构的宽带光隔离特性.结构一在外加磁场与光路光轴方向呈41.0°角时, 用22.90μm的总厚度实现了3nm的宽带光隔离, 且在宽带范围内法拉第旋转角和透射率分别在45°~48.89°和99.86~99.95%之间波动, 此结构在宽带范围内均可实现稳定的光隔离; 结构二在外加磁场与光路光轴方向平行时, 用18.61μm的总厚度实现了1nm的宽带光隔离, 且在宽带范围内法拉第旋转角和透射率分别在45.83°~45.89°和98.53~98.78%之间波动, 此结构无需调节外加磁场角度即可实现光隔离.
Abstract
The 4×4 transfer matrix method is used to investigate the broadband optical isolation property of two different one-dimensional magneto-photonic crystal structures. The results show that the first structure makes broadband optical isolation come true. When the angle between the applied magnetic field and optical axis is set as 41.0°, its bandwidth achieved 3nm with a 22.90μm-thickness, the Faraday rotation angle fluctuated from 45° to 48.89° and transmittance achieved 99.86~99.95%. The other structure with total thickness of 18.61μm achieves a 1nm-bandwidth optical isolation with the Faraday rotation angle fluctuated from 45.83° to 45.89° and transmittance fluctuated from 98.53% to 98.78%, when the applied magnetic field is nearly parallel to the optical axis. This structure ensures the achievement of optical isolation without adjusting the applied magnetic field.
参考文献

[1] Zamani M, Ghanaatshoar M. Adjustable magneto-optical isolators with flat-top responses[J]. Optics Express, 2012, 20(22): 24524-24535.

[2] Inoue M, Fujii T. A theoretical analysis of magneto-optical faraday effect of YIG films with random multilayer structures[J]. Journal of Applied Physics, 1997, 81(8): 5659-5661.

[3] Yang Y B, Wang W J, Fei H M, et al. Effect of structure parameters on the bandgap of two dimensional Archimedes A7 photonic crystals[J]. J. Infrared Millim. Waves(杨毅彪, 王伟军, 费宏明等.结构参数对二维Archimedes A7晶格光子晶体禁带的影响, 红外与毫米波学报), 2012, 31(4): 306-310.

[4] Inoue M, Arai K I, Fujii T, et al. Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers[J]. J. Applied Physics, 1998, 83(11): 6768-6770.

[5] Kato H, Matsushita T, Takayama A, et al. Properties of one-dimensional magneto-photonic crystals for use in optical isolator devices[J]. IEEE Transactions on Magnetics, 2002, 38(5): 3246-3248.

[6] Kato H, Matsushita T, Takayama A, et al. Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals[J]. J. Applied Physics, 2003, 93(7): 3906-3911.

[7] Zamani M, Ghanaatshoar M, Alisafaee H. Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance[J]. J. Modern Optics, 2012, 59(2): 126-130.

[8] Kato H, Matsushita T, Takayama A, et al. Coexistence of faraday rotation and high transmittance in magneto-photonic crystals with multi-cavity structures[J]. J. Magnetism and Magnetic Materials, 2004, 272(1): e1327-e1329.

[9] Taichi G, Alexander V B, Kazuma T, et al. Faraday rotation of a magnetophotonic crystal witn the dual-cavity structure[J]. J. Applied Physics, 2010, 107(9): 09A946.

[10] Levy M, Yang H C, Steel M J, et al. Flat-top response in one-dimensional magnetic photonic bandgap structures with faraday rotation enhancement[J]. J. Lightwave technology, 2001, 19(12): 1964-1969.

费宏明, 武建加, 刘欣, 陈智辉, 杨毅彪. 面向宽带光隔离器的一维磁光子晶体结构[J]. 红外与毫米波学报, 2015, 34(3): 340. FEI Hong-Ming, WU Jian-Jia, LIU Xin, CHEN Zhi-Hui, YANG Yi-Biao. One-dimensional magneto-photonic crystals with flat-top responses for Magneto-optical isolators[J]. Journal of Infrared and Millimeter Waves, 2015, 34(3): 340.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!