中国激光, 2006, 33 (6): 775, 网络出版: 2006-06-13   

包层空气孔孔径的不均匀性对微结构光纤非线性系数的影响

Effect of Hetero-Diameters of Cladding Air Holes on Nonlinearity Coefficient of Microstructured Optical Fibers
王健 1,2,*余重秀 1
作者单位
1 北京邮电大学电子工程学院, 北京 100876
2 北京交通大学理学院, 北京 100044
摘要
在基于微结构光纤(MOFs)的非线性装置中,光纤的非线性系数是一个很重要的参数,它受包层空气孔不均匀性的影响。用全矢量有限元法和误差理论分析了包层空气孔孔径的不均匀性对六角形高非线性微结构光纤非线性系数的影响。通过计算,得到了这种光纤HEx11和HEy11模的非线性系数与每个空气孔孔径之间的关系,从而进一步得到了非线性系数的标准差与包层空气孔孔径标准差之间的关系。这样,在已知孔径的标准差时,很容易得到非线性系数的标准差。当孔径标准差与孔径设计值的比为5%时,HEx11和HEy11模非线性系数标准差与均匀孔径情况下非线性系数值的比分别为2.55%和3.06%。
Abstract
The nonlinearity coefficient of microstructured optical fibers (MOFs) is a quantity of great importance in devices based on the nonlinearity of the fibers. The distribution asymmetry of the cladding air holes can make an impact on it. The effect of hetero-diameters of the cladding air holes on the nonlinearity coefficient of a highly nonlinear MOFs with a hexagonal lattice is analyzed by the full-vector finite element method and the error theory. The dependence of the nonlinearity coefficients of the HEx11 and HEy11 modes of the fiber on the diameter of cladding air hole is computed. Subsequently, the dependence of the standard error of the nonlinearity coefficients on the standard error of the diameters of the air holes is obtained. As a result, if the standard error of the diameters of the air holes is given, it is easy to obtain the standard error of the nonlinearity coefficients. When the ratio of the air hole diameter standard error to the designed diameter is 5%, the ratios of the nonlinearity coefficient standard errors of the HEx11 and HEy11 modes to the nonlinearity coefficient of the fiber with uniform cladding air holes are 2.55% and 3.06%, respectively.
参考文献

[1] . Yusoff, J. H. Lee, W. Belardi et al.. Raman effects in a highly nonlinear holey fiber: amplification and modulation[J]. Opt. Lett., 2002, 27(6): 424-426.

[2] . H. Lee, Z. Yusoff, W. Belardi et al.. Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering[J]. Opt. Lett., 2002, 27(11): 927-929.

[3] . Liu, C. Xu, W. H. Knox et al.. Soliton self-frequency shift in a short tapered air-silica microstructure fiber[J]. Opt. Lett., 2001, 26(6): 358-360.

[4] . Petropoulos, T. M. Monro, W. Belardi et al.. 2R-regenerative all-optical switch based on a highly nonlinear holey fiber[J]. Opt. Lett., 2001, 26(16): 1233-1235.

[5] . E. Sharping, M. Fiorentino, A. Coker et al.. Four-wave mixing in microstructure fiber[J]. Opt. Lett., 2001, 26(14): 1048-1050.

[6] . H. Lee, W. Belardi, K. Furusawa et al.. Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold[J]. IEEE Photon. Technol. Lett., 2003, 15(3): 440-442.

[7] Jingyuan Wang, Mingyi Gao, Chun Jiang et al.. Design and parametric amplification analysis of dispersion—flat photonic crystal fibers [J]. Chin. Opt. Lett., 2005, 3(7):380~282

[8] Ni Yi, Wang Qing, Zhang Lei et al.. Simulation of optical parametric amplification using holey fiber [J]. Chinese J. Lasers, 2004, 31(3):310~312
倪屹,王青,张磊 等. 光子晶体光纤参量放大的理论模拟[J]. 中国激光, 2004, 31(3):310~312

[9] . L. Reichenbach, C. Xu. The effects of randomly occurring nonuniformities on propagation in photonic crystal fibers[J]. Opt. Expess, 2005, 13(8): 2799-2807.

[10] . Koshiba, K. Saitoh. Numerical verification of degeneracy in hexagonal photonic crystal fibers[J]. IEEE Photon. Technol. Lett., 2001, 13(12): 1313-1315.

[11] . Cucinotta, S. Selleri, L. Vincetti et al.. Holey fiber analysis through the finite-element method[J]. IEEE Photon. Technol. Lett., 2002, 14(11): 1530-1532.

[12] Hu Minglie, Wang Qingyue, Li Yanfeng. Analysis of the microstructure fiber by the finite element method [J]. Chinese J. Lasers, 2004, 31(11):1337~1342
胡明列,王清月,栗岩锋. 微结构光纤的有限元分析计算法[J]. 中国激光, 2004, 31(11):1337~1342

[13] Li Zhizhong, Hu Yongming, Yang Huayong et al.. Finite-element analysis of birefringence in circular-core side-hole fiber [J]. Acta Optica Sinica, 2005, 25(8):1013~1018
李智忠,胡永明,杨华勇 等. 圆芯型边孔光纤双折射的有限元分析[J]. 光学学报, 2005, 25(8):1013~1018

[14] G. P. Agrawal. Nonlinear Fiber Optics [M]. 3nd ed.. New York: Academic Press, 2001. 39~45

[15] . Hainberger, S. Watanabe. Impact of the wavelength dependence of the mode field on the nonlinearity coefficient of PCFs[J]. IEEE Photon. Technol. Lett., 2005, 17(1): 70-72.

王健, 余重秀. 包层空气孔孔径的不均匀性对微结构光纤非线性系数的影响[J]. 中国激光, 2006, 33(6): 775. 王健, 余重秀. Effect of Hetero-Diameters of Cladding Air Holes on Nonlinearity Coefficient of Microstructured Optical Fibers[J]. Chinese Journal of Lasers, 2006, 33(6): 775.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!