中国激光, 2015, 42 (9): 0902008, 网络出版: 2015-09-06  

偏振光作用于晶体微粒实现微机械转子旋转的优化研究

Optimum of Micro-motor Rotation Realization by Polarized Beam Interaction with Birefringence Particles
作者单位
1 西南交通大学, 四川 峨眉 614200
2 燕山大学理学院, 河北 秦皇岛 066004
摘要
激光驱动微纳器件为微机械领域中驱动微齿轮提供了一种新型的驱动方式。偏振光束的自旋角动量向晶体微粒传递可使其旋转,基于晶体波动光学理论分析了影响其旋转频率的各种因素(如微粒的厚度和半径;晶体光轴与晶面的夹角;光束在晶面的反射率和透射率、光束振幅比和位相差、激光功率),并推导出晶体微粒的旋转角速度的解析公式。为验证理论结果,在光镊平台上实现了碳酸钙晶体微粒的定位操控和旋转。所得实验值整体比理论值小是由于实际作用在粒子上的的激光有效功率比实验测量值要偏小;结合理论模拟与实验结果对比分析得知:碳酸钙晶体微粒的旋转角速度与激光功率成正比、与晶体微粒半径的三次方成反比、与微粒厚度成周期性变化规律。依此为提高微机械转子的旋转频率进行优化设计:选择CaCO3晶体微粒作为微机械转子较为合适,CaCO3晶体微粒的半径和厚度均取为1~3 μm 。
Abstract
Technology of laser driven micro-nano devices provides a new way for driving micro gear in the field of micro mechanical. The polarization induced rotation can be achieved by the transfer of spin angular momentum of polarized light to birefringent particle. Main factors influencing the rotating angular velocity of uniaxial crystal particles are considered, (such as: thickness and radius of the particle, angle between optical axis and crystal plane, reflection of light beam on the crystal plane, phase contrast between the ordinary and extraordinary rays, laser power). The general formula of rotating angular velocity is derived based on the theory of wave optics. The precise manipulation and rotation of calcium carbonate particles is achieved by optical tweezers. By comparing numerical simulation with experimental analysis, results show that experimental results are smaller compared with theoretical data, which is caused by the smaller effective power of laser beam than the measured. The angular velocity of calcium carbonate particles is proportional to laser power, and inversely proportional to the cube of particle radius, moreover, a periodic variation with thickness. According to the test results and theoretical analysis, the parameters of mechanical microrotor are optimized design to improve the rotation frequency. The design results show that calcium carbonate particles chosen as mechanical rotor is more appropriate, furthermore, the radius and thickness of crystal particles should be chosen from 1 micrometer to 3 micrometer.
参考文献

[1] Friese M E J, Rubinsztein-Dunlop H, Gold J, et al.. Optically driven micro-machine elements [J]. Appl Phys Lett, 2001, 78(4): 547-549.

[2] Simpson N B, Dholakia K, Allen L, et al.. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner [J]. Opt Lett, 1997, 22(1): 52-54.

[3] Vincent L Y Loke, Timo A Nieminen, Agata M Branczyk, et al.. Modeling optical micro-machines[C]. 9th International Conference on Electromagnetic and Light Scattering by Non-Spherical Particles: Theory, Measurements, and Applications, 2006: 163-166.

[4] 祝安定, 刘宇翔, 郭锐, 等. 一种微型转子的激光加工和光致旋转[J]. 光电工程, 2006, 33(1): 10-13.

    Zhu Anding, Liu Yuxiang, Guo Rui, et al.. Micro-rotor fabricated and rotated by laser[J]. Opto-Electronic Engineering, 2006, 33(1): 10-13.

[5] 翟晓敏, 黄文浩. 光镊驱动微转子[J]. 光学精密工程, 2009, 17(6): 1466-1472.

    Zhai Xiaomin, Huang Wenhao. Driving microrotor by using optical tweezers[J]. Optics and Precision Engineering, 2009, 17(6): 1466-1472.

[6] H Rubinsztein- Dunlop, T A Nieminen, M E J Friese, et al.. Optical trapping of absorbing particles[J]. Advances in Quantum Chemistry, 1998, 30: 469-492.

[7] 高明伟, 高春清, 何晓燕, 等. 利用具有轨道角动量的光束实现微粒的旋转[J]. 物理学报, 2004, 53(2): 413-417.

    Gao Mingwei, Gao Chunqing, He Xiaoyan, et al.. Rotation of particle s by using the beam with orbital angular momentum[J]. Acta Physica Sinica, 2004, 53(2): 413-417.

[8] Bishop A I, Nieminen T A, Heckenberg N R, et al.. Optical microrheology using rotating laser-trapped particles[J]. Phys Rev Lett, 2004, 92(19): 198104.

[9] Friese M E J, Hieminen N R, Heckenberg N R, et al.. Optical alignment and spinning of laser-trapped microscopic particles[J]. Nature, 1998, 394(6691): 348-350.

[10] 高秋娟, 朱艳英, 史锦珊, 等. 利用具有自旋角动量的光束实现微粒的旋转[J]. 中国激光, 2008, 35(10): 1505-1509.

    Gao Qiujuan, Zhu Yanying, Shi Jinshan, et al.. Rotation of particles by using the beam with spin angular momentum[J]. Chinese J lasers, 2008, 35(10): 1505-1509.

[11] 孙玉芬, 李银妹, 搂立人. 光阱中CaCO3晶体微粒的光致旋转[J]. 中国激光, 2005, 32(3): 315-318.

    Sun Yufen, Li Yinmei, Lou Liyen. Optical rotation of crystal CaCO3 micro-particle in optical tweezers[J]. Chinese J lasers, 2005, 32(3): 315-318.

[12] 雷铭, 姚保利. 碳酸钙微粒光致旋转的实验和理论研究[J]. 光子学报, 2007, 36(5): 816-819.

    Lei Ming, Yao Baoli. Experimental and theoretical studies of optically driven rotation of calcium carbonate particles[J]. Acta Photonica Sinica, 2007, 36(5): 816-819.

[13] T A Nieminen, H Rubinsztein-Dunlop, N R Hecke-Nberg. Angular momentum generation by scattering: alignment and rotation of microobjects microobjects[C]. 6th Conference on Electromagnetic and Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, 2002: 239-242.

[14] T A Nieminen, H Rubinsztein-Dunlop, N R Heckenberg. Calculation and optical measurement of laser trapping forces on nonspherical particles[J]. Quantitative Spectroscopy and Radiative Transfer, 2001, 70: 627-637.

[15] M E J Friese, T A Nieminen, N R Heckenberg, et al.. Optical torque controlled by elliptical polarization[J]. Optics Letters, 1998, 23(1): 1-3.

[16] 朱艳英, 魏勇, 窦红星, 等. 入射光椭圆度对晶体微粒旋转角速度的影响[J]. 红外与激光工程, 2012, 41(12): 3406-3409.

    Zhu Yanying, Wei Yong, Dou Hongxing, et al.. Effect of incident light ellipticity on the crystal particle rotation speed[J]. Infrared and Laser Engineering, 2012, 41(12): 3406-3409.

[17] 张景超, 朱艳英, 窦红星, 等. 双折射晶体微粒光致旋转受其半径影响分析[J]. 红外与激光工程, 2012, 41(1): 155-159.

    Zhu Jingchao, Zhu Yanying, Dou Hongxing, et al.. Analysis of radius effect on optical rotation of birefringent crystal particles[J]. Infrared and Laser Engineering, 2012, 41(1): 155-159.

[18] 朱艳英, 靳李丽, 许耀云, 等. 双光源双光阱法驱动微型粒子旋转的实验研究[J]. 光电子·激光, 2012, 23(7): 1338-1342.

    Zhu Yanying, Jin Lili, Xu Yaoyun, et al.. Experimental study of micro particle rotation driven dual light sources and dual optical trap method[J]. Journal of Optoelectronics·Laser, 2012, 23(7): 1338-1342.

[19] 吴闻迪, 王会丽, 周田华, 等. 双折射滤波器晶体片厚度精度与滤波性能的研究[J]. 中国激光, 2014, 41(12): 1208009.

    Wu Wendi, Wang Huili, Zhou Tianhua, et al.. Research on the filter performance with crystal thickness accuracy in the birefringent filters[J]. Chinese J Lasers, 2014, 41(12): 1208009.

[20] 李克武, 王志斌, 张瑞, 等. 液晶可变延迟器的双折射色散研究[J]. 中国激光, 2015, 42(1): 0108001.

    Li Kewu, Wang Zhibin, Zhang Rui, et al.. Study of birefringence dispersion based on liquid crystal variable retarder[J]. Chinese J Lasers, 2015, 42(1): 0108001.

沈军峰, 朱艳英, 魏勇, 王锁明, 王明利. 偏振光作用于晶体微粒实现微机械转子旋转的优化研究[J]. 中国激光, 2015, 42(9): 0902008. Shen Junfeng, Zhu Yanying, Wei Yong, Wang Suoming, Wang Mingli. Optimum of Micro-motor Rotation Realization by Polarized Beam Interaction with Birefringence Particles[J]. Chinese Journal of Lasers, 2015, 42(9): 0902008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!