光学技术, 2010, 36 (4): 627, 网络出版: 2011-02-21  

电子密度对等离子体光子晶体禁带特性的影响

Influence of electron density on the band gap structures of plasma photonic crystal
作者单位
1 河北大学 物理科学与技术学院, 河北 保定 071002
2 山东沾化发电厂, 山东 滨州 256800
摘要
从Maxwell方程出发, 采用类似于量子力学Kronig-Penney模型求解周期势的方法, 结合双水电极介质阻挡放电的实验结果, 研究了电子密度ne对一维等离子体光子晶体禁带特性的影响。研究发现:电子密度对等离子体光子晶体光子禁带的位置和宽度均有重要的影响; 等离子体光子晶体的禁带宽度随电子密度的增加而增大, 增长速率为电子密度的函数; 等离子体光子晶体的截止频率、光子禁带边缘频率随电子密度的增大而增大。给出了当等离子体光子晶体具有显著禁带宽度时的电子密度的理论临界值。
Abstract
The influence of the electron density ne on the band gap structures of one-dimensional plasma photonic crystals is studied on the basis of the experimental results in a dielectric barrier discharge with two water electrodes. The stationary Maxwell wave equation is solved by using a method analogous to Kronig-Penney’s problem in quantum mechanics. Results show that the electron density affects greatly on both of the band gap widths and the band gap positions. The band gap width becomes larger with an increasing of the electron density, whose growth rate is related to the value of ne. The cut-off frequency as well as the band gap edge frequency are increased with ne. The critical electron density is given theoretically, with which the plasma photonic crystal has a remarkable band gap width.
参考文献

[1] . Photonic band gap structures of obliquely incidengt electromagnatic wave propagation in one-dimentional absorptive plasma photonic crystal[J]. Plasma of Physics, 2009, 16: 043508.

[2] . Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas[J]. Appl Phys Lett, 2005, 87: 241505.

[3] . Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals[J]. J Plasma Fusion Res, 2004, 80: 89.

[4] . A Potential Tunable Plasma Photonic Crystal: Applications of Atmospheric Patterned Gas Discharge[J]. IEEE Transations on Plasma Science, 2009, 37(6): 1016.

[5] . Integrated coaxial-hollow micro dielectric-barrier-discharges for a large-area plasma source operating at around atmospheric pressure[J]. J Appl Phys, 2005, 38: 431.

[6] . Photonic bands in two-dimensional microplasma arrays[J]. J Appl Phys, 2007, 101: 073304.

[7] . Photonic bands in two-dimensional microplasma arrays[J]. J Appl Phys, 2007, 101: 073305.

[8] . Photonic band gap effect in one-dimensional plasma dielctric photonic crystals[J]. Solid State Communications, 2006, 138: 160.

[9] 刘少斌, 莫锦军, 袁乃昌. 等离子体光子晶体的FDTD 分析[J]. 物理学报, 2005, 54: 2804—2808.

[10] 章海峰, 马力, 刘少斌. 非磁化等离子体光子晶体的禁带周期特性研究[J]. 光子学报, 2008, 337: 1566—1570.

[11] . Hexagon and square patterned air discharges[J]. Appl Phys Lett, 2007, 90: 031504.

[12] . Self-organized gas discharge patterns in a dielectric-barrier discharge system[J]. IEEE Transations on Plasma Science, 2008, 36: 1356.

[13] 林明东, 邵福球, 欧阳建明. 一维等离子体光子晶体的带隙研究[J]. 光学技术, 2008, 34 :408—413.

[14] 李伟, 张海涛, 巩马理, 等. 等离子体光子晶体[J]. 光学技术, 2004, 30: 263—266.

[15] . Direct measurement of electron density in microdischarge at atmospheric pressure by stark broadening[J]. Appl Phys Lett, 2005, 86: 161501.

范伟丽, 张新立, 董丽芳. 电子密度对等离子体光子晶体禁带特性的影响[J]. 光学技术, 2010, 36(4): 627. FAN Wei-li, ZHANG Xin-li, DONG Li-fang. Influence of electron density on the band gap structures of plasma photonic crystal[J]. Optical Technique, 2010, 36(4): 627.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!