光子学报, 2016, 45 (2): 0206007, 网络出版: 2016-04-01   

湍流信道下激光器互调失真特性

Laser Intermodulation Distortion and Characteristic under the Turbulence Channel
作者单位
西安理工大学 自动化与信息工程学院,西安 710048
摘要
基于半导体激光器速率方程,采用贝塞尔函数推导激光器非线性互调失真表达式.在GammaGamma湍流信道下,针对无线光多路副载波二进制相移键控调制,研究非线性互调失真对系统载波互调噪声比及误码率性能的影响,并给出系统最佳调制指数的选取与非线性系数的对应关系.结果表明,同一湍流条件下,调制指数小于最佳取值时,随着调制指数增加载波互调噪声比上升、误码率下降,而调制指数高于最佳取值时系统性能劣化.当闪烁指数为0.2,最佳调制指数为0.6时,获得的最大载波互调噪声比为12.9 dB.
Abstract
Based on the rate equation of semiconductor laser, the expression of laser nonlinear intermodulation distortion was deduced by Bessel function. According to the GammaGamma model under the turbulence channel, the influence of performance about carrier signal to intermodulation distortion and noise ratio and bit error rate was researched based multiple subcarrier binary phase shift keying modulation.The selection of optimal modulation index with the corresponding relation of nonlinear coefficient was given. The results show that under the same turbulence condition, carrier signal to intermodulation distortion and noise ratio increases and bit error rate decreases with the increasing of modulation index when the value of modulation index is less than the optimum index. However, when the value of modulation index is bigger the best index, system performance deteriorates. When the scintillation index is 0.2 and the optimum modulation index is 0.6, the maximum carrier signal to intermodulation distortion and noise ratio can get to 12.9 dB.
参考文献

[1] GORDON G S D, CRISP M J, PENTY R V, et al. Highorder distortion in direct modulated semiconductor lasers in highloss analog optical link with large of dynamic range[J]. IEEE Journal of Lightwave Technology, 2011, 29(23): 35773586.

[2] YONG L, SUAIDI M K, CHAIA K N, et al. Fifth order versus thirdorder intermodulation distortion[C]. IEEE AisaPacific Conferenceon Applied Electromagnetics Proceeding, 2007: 15.

[3] TANG X, RAJBHANDARI S, POPOOLA W O, et al. Perfomance of BPSK subcarrier intensity modulation freespace communicationusing a lognormal atmospheric turbulence mode[C]. IEEE, 2010: 14.

[4] SONG Xuegui, CHENG Julian. Optical communication using subcarrier intensity modulation in strong atmospheric turbulence[J].IEEE Journal of Lightwave Technology, 2012, 30(22): 34833493.

[5] BIHAN J L, YABRE G F M. IM intermodulation distortion in dirtectlymodulatedsinglemode emiconductorlaser[J].IEEE,Journalof Quantum Electronic, 1994, 40(4): 899903.

[6] KELVIN S C Y, MANAS K Haldar, JEFFREY F W. Harmonic and intermodulation distortion indirect intensity modulated quantumcascade lases[J]. IEEE Journal of Lightwave Technology, 2014, 32(20): 37353741.

[7] ZHANG Mingjiang, LIU Tiegen, LIJingxia, et al. Effect of line width enhancement factor on the nonlinear periodone osillation of asemiconductorlaser with external optical injection[J]. Acta Photonica Sinica, 2011, 40(4): 542546. 张明江,刘铁根,李静霞,等.线宽增强因子对外光注入半导体激光器 非线性单周期振荡特性的影响[J].光子学报,2011,40(4):542546.

[8] SAMIMI H, AZMIi P. Subcarrierintensity modulated freespace opticalcommunication in Kdistributed turbulence channels [J].IEEE Journal of Optical Communications and Networking, 2010, 2(8): 625632.

[9] DALY J C. Fiberopticaintermodulation distortion[J]. IEEE Transactions on Communications, 1982, 30(8): 19541958.

[10] HUANG W, NAKAWAGA M. Nonlinereffect of direct sequence CDMA in optical transmission[C].IEEE 3rd Intermodulational Sysposium on Spread Spectrum Techniques &Applications,1994: 588592.

[11] BARMAN A D, BASU P K. Incoherentinband crosstalk induced power penalty in amplified WDM networks:acomparative study using gaussian and chisquared probability density functions[J]. IETCircuits Devices & Systems, 2008, 2(1): 139143.

[12] GHASSEMLOOY Z, POPOOLA W O, LEITGIB E. Freespace opticalcommunicational using subcarrier modulation GammaGamma atmospheric turbulence[C].IEEE 9th Internation Conference on Transparent Optical Networks, 2007: 150160.

[13] WAKAFUJI K, OHTSUKI T. Performance analysis of atmospheric optical subcarrier multiplexing systems and atmospheric optical subcarrier modulated codedivision multiplexing system[J]. IEEE Journal of Lightwave Technology, 2005, 23(4): 16761682.

[14] 邢建斌,许国良,张旭苹,等.大气湍流对激光通信系统的影响[J].光子学报,2005,34(12):18501852.

    XING Jianbin, XU Guoliang, ZHANG Xuping, et al. Effect of the atmosphericturbulence on laser communication system[J]. Acta Photonica Sinica, 2005, 34(12): 18501852.

[15] UYSAL M, LI Jing. Error rate performance of coded freespace opticallink over GammaGamma turbulence channels[C]. IEEE Internation Coference Communication Society, 2004: 33313335.

[16] 于林韬,宋路,韩成等.空地激光通信链路功率与通信性能分析与方针[J].光子学报,2013,42(5):543547.

    YU Lintao, SONG Lu, HAN Cheng, et al. Analysis and simulation of link power and communication performance in spaceground optical communication[J]. Acta Photonica Sinica, 2013, 42(5): 543547.

[17] BEKKLALI A, NAILA C B, KAZAURA K, et al. Transmission analysis of OFDM based wireless serivicesover turbulent ratioon FSO links modulated by GammaGamma distortion[J]. IEEE Photonics Hournal, 2010, 2(3): 510520.

[18] POPOOLA W O, GHASSEMLOOY Z. BPSK subcarrier intensity modulated freespace optical communications in atmospheric turbulence[J]. IEEE Journal of Lightwave Technology, 2009, 27(8): 967973.

陈丹, 柯熙政, 张璐. 湍流信道下激光器互调失真特性[J]. 光子学报, 2016, 45(2): 0206007. CHEN Dan, KE Xizheng, ZHANG Lu. Laser Intermodulation Distortion and Characteristic under the Turbulence Channel[J]. ACTA PHOTONICA SINICA, 2016, 45(2): 0206007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!