Frontiers of Optoelectronics, 2013, 6 (4): 429, 网络出版: 2014-03-03  

Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers

Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers
作者单位
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
The advantages of blue InGaN light-emitting diodes (LED) with the active region of gradually increased barrier heights from n- to p-layers are studied. The energy band diagram, hole concentration, electrostatic field near the electron blocking layer (EBL), and the internal quantum efficiency (IQE) are investigated by Crosslight simulation program. The simulation results show that the structure with gradually increased barrier heights has better performance over the equal one, which can be attributed to the mitigated polarization effect near the interface of the last barrier/EBL due to less interface polarization charges. Moreover, reduced barrier height toward the n-layers is beneficial for holes injection and transportation in the active region. As a result, holes are injected into the active region more efficiently and distributed uniformly in the quantum wells, with which both the IQE and the total lighting power are increased. Although it can lead to the broadening of the spontaneous emission spectrum, the increase is slight such that it has little effect on the application in solid-state lighting.
参考文献

[1] Oh J H, Oh J R, Park H K, Sung Y G, Do Y R. New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs. Optics Express, 2011, 19(Suppl 3): A270-A279

[2] Li J, Lin J Y, Jiang H X. Growth of III-nitride photonic structures on large area silicon substrates. Applied Physics Letters, 2006, 88(17): 171909

[3] Liao C T, Tsai M C, Liou B T, Yen S H, Kuo Y K. Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well. Journal of Applied Physics, 2010, 108(6): 063107

[4] Gao H Y, Yan F W, Zhang Y, Li J M, Zeng Y P, Wang G H. Enhancement of the light output power of InGaN/GaN lightemitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale. Journal of Applied Physics, 2008, 103(1): 014314

[5] Lee J H, Lee D Y, Oh B W, Lee J H. Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate. IEEE Transactions on Electron Devices, 2010, 57(1): 157-163

[6] Tansu N, Mawst L J. Current injection efficiency of InGaAsN quantum-well lasers. Journal of Applied Physics, 2005, 97(5): 054502

[7] Choi S, Ji M H, Kim J, Kim H J, Satter M M, Yoder P D, Ryou J H, Dupuis R D, Fischer A M, Ponce F A. Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers. Applied Physics Letters, 2012, 101(16): 161110

[8] Hori A, Yasunaga D, Satake A, Fujiwara K. Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single-quantum-well light-emitting diodes. Journal of Applied Physics, 2003, 93(6): 3152-3157

[9] Wang C H, Chang S P, Ku P H, Li J C, Lan Y P, Lin C C, Yang H C, Kuo H C, Lu T C, Wang S C, Chang C Y. Hole transport improvement in InGaN/GaN light-emitting diodes by gradedcomposition multiple quantum barriers. Applied Physics Letters, 2011, 99(17): 171106

[10] Otsuji N, Fujiwara K, Sheu J K. Electroluminescence efficiency of blue InGaN/GaN quantum-well diodes with and without an n-InGaN electron reservoir layer. Journal of Applied Physics, 2006, 100(11): 113105

[11] Zhao H P, Liu G Y, Arif R A, Tansu N. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid-State Electronics, 2010, 54(10): 1119-1124

[12] Zhao H P, Liu G Y, Zhang J, Arif R A, Tansu R. Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes. Journal of Display Technology, 2013, 9(4): 212-225

[13] Titkov I E, Sannikov D A, Park Y M, Son J K. Blue light emitting diode internal and injection efficiency. AIP Advances, 2012, 2(3): 032117

[14] Xu L F, Patel D, Menoni C S, Yeh J Y, Mawst L J, Tansu N. Experimental evidence of the impact of nitrogen on carrier capture and escape times in InGaAsN/GaAs single quantum well. IEEE Photonics Journal, 2012, 4(6): 2262-2271

[15] Tansu N, Mawst L J. The role of hole leakage in 1300-nm InGaAsN quantum-well lasers. Applied Physics Letters, 2003, 82(10): 1500-1502

[16] Chang J Y, Tsai M C, Kuo Y K. Advantages of blue InGaN lightemitting diodes with AlGaN barriers. Optics Letters, 2010, 35(9): 1368-1370

[17] Liu G Y, Zhang J, Tan C K, Tansu N. Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes. IEEE Photonics Journal, 2013, 5(2): 2201011

[18] Delaney K T, Rinke P, Van de Walle C G. Auger recombination rates in nitrides from first principles. Applied Physics Letters, 2009, 94(19): 191109

[19] Tan C K, Zhang J, Li X H, Liu G Y, Tayo B O, Tansu N. Firstprinciple electronic properties of dilute-As GaNAs alloy for visible light emitters. Journal of Display Technology, 2013, 9(4): 272-279

[20] Kuo Y K, Chang J Y, Tsai M C. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer. Optics Letters, 2010, 35(19): 3285-3287

[21] Kuo Y K, Tsai M C, Yen S H. Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electronblocking layer and barrier layer. Optics Communications, 2009, 282(21): 4252-4255

[22] Zhang Y Y, Yin Y A. Performance enhancement of blue lightemitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer. Applied Physics Letters, 2011, 99(22): 221103

[23] Vampola K J, Iza M, Keller S, DenBaars S P, Nakamura S. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Applied Physics Letters, 2009, 94(6): 061116-1-061116-3

[24] Liou B T, Tsai M C, Liao C T, Yen S H, Kuo Y K. Numerical investigation of blue InGaN light-emitting diodes with staggered quantum wells. Proceedings of the Society for Photo-Instrumentation Engineers, 2009, 7211: 72111D-1-72111D-8

[25] Jain S C, Willander M, Narayan J, Overstraeten R V. III-nitrides: growth, characterization, and properties. Journal of Applied Physics, 2000, 87(3): 965-1006

[26] Yen S H, Kuo Y K. Polarization-dependent optical characteristics of violet InGaN laser diodes. Journal of Applied Physics, 2008, 103(10): 103115-1-103115-6

[27] Kuo Y K, Yen S H, Wang Y W. Simulation of deep ultraviolet light-emitting diodes. Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6669: 66691J

[28] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, SchaffWJ, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN hetero-structures. Journal of Applied Physics, 2000, 87(1): 334-344

[29] Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Applied Physics Letters, 2002, 80(7): 1204-1206

[30] Ridley B K, Schaff W J, Eastman L F. Theoretical model for polarization superlattices: Energy levels and intersubband transitions. Journal of Applied Physics, 2003, 94(6): 3972-3978

[31] Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 2003, 94(6): 3675-3696

[32] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 2001, 89(11): 5815-5875

[33] Chichibu S F, Abare A C, Minsky M S, Keller S, Fleischer S B, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P, Sota T. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Applied Physics Letters, 1998, 73(14): 2006-2008

[34] Feezell D F, Speck J S, DenBaars S P, Nakamura S. Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solidstate lighting. Journal of Display Technology, 2013, 9(4): 190-198

[35] Farrell R M, Haeger D A, Fujito K, DenBaars S P, Nakamura S, Speck J S. Morphological evolution of InGaN/GaN light-emitting diodes grown on free-standing m-plane GaN substrates. Journal of Applied Physics, 2013, 113(6): 063504

[36] Zhang J, Tansu N. Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates. IEEE Photonics Journal, 2013, 5(2): 2600111

[37] Zhao H P, Liu G Y, Zhang J, Poplawsky J D, Dierolf V, Tansu N. Approaches for high internal quantum efficiency green InGaN lightemitting diodes with large overlap quantum wells. Optics Express, 2011, 19(Suppl 4): A991-A1007

Wu TIAN, Xiong HUI, Yang LI, Jiangnan DAI, Yanyan FANG, Zhihao WU, Changqing CHEN. Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers[J]. Frontiers of Optoelectronics, 2013, 6(4): 429. Wu TIAN, Xiong HUI, Yang LI, Jiangnan DAI, Yanyan FANG, Zhihao WU, Changqing CHEN. Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers[J]. Frontiers of Optoelectronics, 2013, 6(4): 429.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!