中国激光, 2020, 47 (9): 0905003, 网络出版: 2020-09-16   

基于涡旋圆偏振光干涉的偏振快速旋转束匀滑方案 下载: 1679次封面文章

Rapid Polarization Rotation Smoothing Scheme Based on Interference of Circularly Polarized Vortex Beamlets
作者单位
四川大学电子信息学院, 四川 成都 610065
引用该论文

黄媛, 张寅瑞, 钟哲强, 张彬, 孙年春. 基于涡旋圆偏振光干涉的偏振快速旋转束匀滑方案[J]. 中国激光, 2020, 47(9): 0905003.

Huang Yuan, Zhang Yinrui, Zhong Zheqiang, Zhang Bin, Sun Nianchun. Rapid Polarization Rotation Smoothing Scheme Based on Interference of Circularly Polarized Vortex Beamlets[J]. Chinese Journal of Lasers, 2020, 47(9): 0905003.

参考文献

[1] Spaeth M, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145.

[2] 张小民, 魏晓峰. 中国新一代巨型高峰值功率激光装置发展回顾[J]. 中国激光, 2019, 46(1): 0100003.

    Zhang X M, Wei X F. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 2019, 46(1): 0100003.

[3] Haines B M, Vold E L, Molvig K, et al. The effects of plasma diffusion and viscosity on turbulent instability growth[J]. Physics of Plasmas, 2014, 21(9): 092306.

[4] Dixit S N, Thomas I M, Woods B W, et al. Random phase plates for beam smoothing on the Nova laser[J]. Applied Optics, 1993, 32(14): 2543-2554.

[5] Rothenberg J E. Comparison of beam-smoothing methods for direct-drive inertial confinement fusion[J]. Journal of the Optical Society of America B, 1997, 14(7): 1664-1671.

[6] 王健, 钟哲强, 张彬, 等. 基于复合型光栅组合的多色集束匀滑方案[J]. 光学学报, 2018, 38(8): 0814001.

    Wang J, Zhong Z Q, Zhang B, et al. Beam smoothing scheme for multi-color laser quad based on a combination of hybrid gratings[J]. Acta Optica Sinica, 2018, 38(8): 0814001.

[7] 朱应成, 邬融, 张军勇, 等. 全频分段控制下连续相位板的优化设计[J]. 光学学报, 2018, 38(7): 0723001.

    Zhu Y C, Wu R, Zhang J Y, et al. Optimal design for continuous phase plate under segmental control across full-spectrum[J]. Acta Optica Sinica, 2018, 38(7): 0723001.

[8] 田玉婷, 邬融, 孙明营, 等. 非线性调制影响束匀滑相位板离焦性能的研究[J]. 光学学报, 2018, 38(10): 1014003.

    Tian Y T, Wu R, Sun M Y, et al. Influence of nonlinear modulation on the defocusing performance of beam smoothing phase plate[J]. Acta Optica Sinica, 2018, 38(10): 1014003.

[9] Jiang Y E, Li X C, Zhou S L, et al. Microwave resonant electro-optic bulk phase modulator for two-dimensional smoothing by spectral dispersion in SG-II[J]. Chinese Optics Letters, 2013, 11(5): 052301.

[10] Boehly T R, Smalyuk V A, Meyerhofer D D, et al. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser[J]. Journal of Applied Physics, 1999, 85(7): 3444-3447.

[11] Smalyuk V A, Boehly T R, Bradley D K, et al. Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets[J]. Physical Review Letters, 1998, 81(24): 5342-5345.

[12] Regan S P, Marozas J A, Kelly J H, et al. Experimental investigation of smoothing by spectral dispersion[J]. Journal of the Optical Society of America B, 2000, 17(9): 1483-1489.

[13] Glenzer S H, Suter L J, Turner R, et al. Energetics of inertial confinement fusion hohlraum plasmas[J]. Physical Review Letters, 1998, 80(13): 2845-2848.

[14] 龚韬. 激光间接驱动惯性约束聚变中受激散射过程的理论和实验研究[D]. 合肥: 中国科学技术大学, 2015.

    GongT. Theoretical and experimental study on stimulated scattering in laser indirect-drive inertial confinement fusion[D]. Hefei: University of Science and Technology of China, 2015.

[15] Hinkel D E, Callahan D A, Langdon A B, et al. Analyses of laser-plasma interactions in National Ignition Facility ignition targets[J]. Physics of Plasmas, 2008, 15(5): 056314.

[16] Lefebvre E, Berger R L, Langdon A B, et al. Reduction of laser self-focusing in plasma by polarization smoothing[J]. Physics of Plasmas, 1998, 5(7): 2701-2705.

[17] Barth I, Fisch N J. Reducing parametric backscattering by polarization rotation[J]. Physics of Plasmas, 2016, 23(10): 102106.

[18] Liu Z, Zheng C, Cao L H, et al. Decreasing Brillouin and Raman scattering by alternating-polarization light[J]. Physics of Plasmas, 2017, 24(3): 032701.

[19] 田博宇, 钟哲强, 隋展, 等. 基于涡旋光束的超快速角向集束匀滑方案[J]. 物理学报, 2019, 68(2): 024207.

    Tian B Y, Zhong Z Q, Sui Z, et al. Ultrafast azimuthal beam smoothing scheme based on vortex beam[J]. Acta Physica Sinica, 2019, 68(2): 024207.

[20] Haynam C, Wegner P J, Auerbach J M, et al. National Ignition Facility laser performance status[J]. Applied Optics, 2007, 46(16): 3276-3303.

[21] Skupsky S, Short R W, Kessler T J, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462.

[22] Spaeth M L, Manes K R, Bowers M W, et al. National ignition facility laser system performance[J]. Fusion Science and Technology, 2016, 69(1): 366-394.

[23] Zheng W G, Wei X F, Zhu Q H, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243-255.

[24] 苟斗斗, 杨四刚, 尹飞飞, 等. 1 μm波段宽带可调谐锁模光纤激光器[J]. 光学学报, 2013, 33(7): 0706013.

    Gou D D, Yang S G, Yin F F, et al. Widely tunable mode-locked fiber laser operating in 1 μm wavelength range[J]. Acta Optica Sinica, 2013, 33(7): 0706013.

[25] 郭瑾颐, 徐润亲, 范路遥, 等. 非线性掺镱光纤放大器产生宽光谱机理[J]. 中国激光, 2019, 46(9): 0901009.

    Guo J Y, Xu R Q, Fan L Y, et al. Mechanism of broadband spectrum generation based on nonlinear ytterbium-doped fiber amplifier[J]. Chinese Journal of Lasers, 2019, 46(9): 0901009.

[26] 邵建达, 戴亚平, 许乔. 惯性约束聚变激光驱动装置用光学元器件的研究进展[J]. 光学精密工程, 2016, 24(12): 2889-2895.

    Shao J D, Dai Y P, Xu Q. Progress on optical components for ICF laser facility[J]. Optics and Precision Engineering, 2016, 24(12): 2889-2895.

[27] 郭隐彪, 彭云峰, 王振忠, 等. 大口径光学元件的精密磨抛与检测装备开发及应用[J]. 航空制造技术, 2018( 6): 26- 35.

    Guo YB, Peng YF, Wang ZZ, et al. Development and application of precision grinding/polishing and measurement equipment for large-size optical components[J]. Aeronautical Manufacturing Technology, 2018( 6): 26- 35.

[28] 范长江, 徐建程, 任志君, 等. 激光直写制作高阶螺旋相位板及其性能[J]. 强激光与粒子束, 2011, 23(12): 3283-3286.

    Fan C J, Xu J C, Ren Z J, et al. Performance of high-order spiral phase plate made by direct laser writing lithography[J]. High Power Laser and Particle Beams, 2011, 23(12): 3283-3286.

[29] Shi L F, Zhang Z Y, Cao A, et al. One exposure processing to fabricate spiral phase plate with continuous surface[J]. Optics Express, 2015, 23(7): 8620-8629.

[30] 侯晶, 王洪祥, 陈贤华, 等. 大口径平面光学元件的磁流变加工[J]. 光学精密工程, 2016, 24(12): 3054-3060.

    Hou J, Wang H X, Chen X H, et al. Magnetorheological processing for large aperture plane optical elements[J]. Optics and Precision Engineering, 2016, 24(12): 3054-3060.

[31] 周波. 熔石英光学元件表面微区离子束修饰技术研究[D]. 成都: 电子科技大学, 2017.

    ZhouB. Ion beam modification of surface micro-area of fused silica optical components[D]. Chengdu: University of Electronic Science and Technology of China, 2017.

黄媛, 张寅瑞, 钟哲强, 张彬, 孙年春. 基于涡旋圆偏振光干涉的偏振快速旋转束匀滑方案[J]. 中国激光, 2020, 47(9): 0905003. Huang Yuan, Zhang Yinrui, Zhong Zheqiang, Zhang Bin, Sun Nianchun. Rapid Polarization Rotation Smoothing Scheme Based on Interference of Circularly Polarized Vortex Beamlets[J]. Chinese Journal of Lasers, 2020, 47(9): 0905003.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!