激光生物学报, 2016, 25 (6): 481, 网络出版: 2017-01-23  

生物医学光学中NADH荧光检测技术的发展

Development of NADH Fluorescence Detection Technology in Biomedical Optics
作者单位
1 西安交通大学 a.生命科学与技术学院综合实践训练第十小组
2 西安交通大学 b.生命科学与技术学院
3 西安交通大学 c.生物医学信息工程教育部重点实验室、生物医学分析技术与仪器研究所 陕西 西安 710049
引用该论文

张瑞, 黄玉广, 裴应玫, 党昱东, 张知, 张建保, 张镇西. 生物医学光学中NADH荧光检测技术的发展[J]. 激光生物学报, 2016, 25(6): 481.

ZHANG Rui, HUANG Yuguang, PEI Yingmei, DANG Yudong, ZHANG Zhi, ZHANG Jianbao, ZHANG Zhenxi. Development of NADH Fluorescence Detection Technology in Biomedical Optics[J]. Acta Laser Biology Sinica, 2016, 25(6): 481.

参考文献

[1] 李志豪, 刘建, 刘子恩, 等. 稀土上转换发光纳米探针用于潜指纹中可卡因的检测[J]. 分析科学学报, 2014, 30(5): 692-696.

    LI Zhihao, LIU Jian, LIU Zien, et al. Detection of exogenous compounds in latent fingerprints based on aptamers-functionalized upconversion nanoparticles[J]. Journal of Analytical Science, 2014, 30(5): 692-696.

[2] 张然星, 刘建彬, 谭延国. 几种化学发光检测系统测定血清胰岛素的临床效果评价[J]. 中华临床医师杂志(电子版), 2010, 4(11): 2218-2221.

    ZHANG Ranxing, LIU Jianbin, TAN Yanguo. Evaluation of clinical effects for different chemiluminescence immunoassay systems of serum insulin and C-peptide[J]. Chinese Journal of Laboratory Diagnosis, 2010, 4(11): 2218-2221.

[3] CHANCE B, COHEN P J, JOBSIS F F, et al. Intracellular oxidation-reduction states in vivo[J]. Science, 1962, 137(3529): 499-508.

[4] SHI H, SUN N, MAYEVSKY A, et al. Early identification of acute hypoxia based on brain NADH fluorescence and cerebral blood flow[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1450033-1-9.

[5] STIEFEL M F, SPIOTTA A, GRACIAS V H, et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring[J]. Journal of Neurosurgery, 2005, 103(5): 805-811.

[6] SHI H, SUN N, MAYEVSKY A, et al. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia[J]. Journal of Biomedical Optics, 2014, 19(1): 17005.

[7] YU Q, HEIKAL A A. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level[J]. Journal of Photochemistry & Photobiology B Biology, 2009, 95(1): 46-57.

[8] YASEEN M A, SAKADIC′ S, WU W, et al. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH[J]. Biomedical Optics Express, 2013, 4(2): 307-321.

[9] DUCHEN M R. Mitochondria in health and disease: perspectives on a new mitochondrial biology[J]. Molecular Aspects of Medicine, 2004, 25(4): 365-451.

[10] DROZDOWICZ-TOMSIA K, ANWER A G, CAHILL M A, et al. Multiphoton fluorescence lifetime imaging microscopy reveals free-to-bound NADH ratio changes associated with metabolic inhibition[J]. Journal of Biomedical Optics, 2014, 19(8): 086016.

[11] BLACKER T S, MANN Z F, GALE J E, et al. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM[J]. Nature Communications, 2014, 5: 3936.

[12] 刘发全, 邹杏坚, 陈永惠, 等. NADH对辐射后正常肝细胞株L02内ROS、Ca2+和pH水平的影响[J]. 肿瘤药学, 2015, 5(6): 425-429.

    LIU Faquan, ZOU Xingjian, CHEN Yonghui, et al. The effects of NADH on intracellular ROS, free Ca2+ and pH in L02 liver cells induced by X-ray irradiation[J]. Anti-tumor Pharmacy, 2015, 5(6): 425-429.

[13] 刘发全, 张积仁. NADH对X射线照射正常肝细胞L02后PARP和Caspase3活性的影响[J]. 黑龙江医学, 2015, 39(5): 468-469.

    LIU Faquan, ZHANG Jiren. Effect of NADH on the damage of L02 cells undergoing X-ray irradiation[J]. Heilongjiang Medical Journal, 2015, 39(5): 468-469.

[14] FRENCH S W. Chronic alcohol binging injures the liver and other organs by reducing NAD+ levels required for sirtuin’s deacetylase activity[J]. Experimental & Molecular Pathology, 2016, 100(2): 303-306.

[15] BITOUN J P, WEN Z T. Transcription factor Rex in regulation of pathophysiology in oral pathogens[J]. Molecular Oral Microbiology, 2015, 31(2): 115-124.

[16] XIANG Y L Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets[J]. Nature Chemistry, 2011, 3(9): 697-703.

[17] SU J, XU J, CHEN Y, et al. Personal glucose sensor for point-of-care early cancer diagnosis[J]. Chemical Communication, 2012, 48(55): 6909-6911.

[18] YAN L, ZHU Z, ZOU Y, et al. Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets[J]. Journal of the American Chemical Society, 2013, 135(10): 3748-3751.

[19] ZHANG J, XIANG Y, WANG M, et al. Dose-dependent response of personal glucose meters to nicotinamide coenzymes: applications to point-of-care diagnostics of many non-glucose targets in a single step[J]. Angew Chem Int Ed Engl, 2016, 55(2): 732-736.

[20] LAN T, ZHANG J, LU Y. Transforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile health[J]. Biotechnology Advances, 2016, 34(3): 331-341.

[21] OMAR F S, DURAISAMY N, RAMESH K, et al. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH)[J]. Biosensors & Bioelectronics, 2016, 79: 763-775.

张瑞, 黄玉广, 裴应玫, 党昱东, 张知, 张建保, 张镇西. 生物医学光学中NADH荧光检测技术的发展[J]. 激光生物学报, 2016, 25(6): 481. ZHANG Rui, HUANG Yuguang, PEI Yingmei, DANG Yudong, ZHANG Zhi, ZHANG Jianbao, ZHANG Zhenxi. Development of NADH Fluorescence Detection Technology in Biomedical Optics[J]. Acta Laser Biology Sinica, 2016, 25(6): 481.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!