Photonics Research, 2018, 6 (6): 06000506, Published Online: Jul. 2, 2018   

Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide Download: 767次

Author Affiliations
1 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2 Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
3 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
4 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, China
Copy Citation Text

Qingyang Du, Zhengqian Luo, Huikai Zhong, Yifei Zhang, Yizhong Huang, Tuanjie Du, Wei Zhang, Tian Gu, Juejun Hu. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide[J]. Photonics Research, 2018, 6(6): 06000506.

References

[1] A. Nitkowski, L. Chen, M. Lipson. Cavity-enhanced on-chip absorption spectroscopy using microring resonators. Opt. Express, 2008, 16: 11930-11936.

[2] A. Nitkowski, A. Baeumner, M. Lipson. On-chip spectrophotometry for bioanalysis using microring resonators. Biomed. Opt. Express, 2011, 2: 271-277.

[3] B. Mizaikoff. Waveguide-enhanced mid-infrared chem/bio sensors. Chem. Soc. Rev., 2013, 42: 8683-8699.

[4] X. Wang, J. Antoszewski, G. Putrino, W. Lei, L. Faraone, B. Mizaikoff. Mercury-cadmium-telluride waveguides: a novel strategy for on-chip mid-infrared sensors. Anal. Chem., 2013, 85: 10648-10652.

[5] E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, R. Baets. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomed. Opt. Express, 2014, 5: 1636-1648.

[6] Y. Chen, H. Lin, J. Hu, M. Li. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano, 2014, 8: 6955-6961.

[7] V. Singh, P. T. Lin, N. Patel, H. Lin, L. Li, Y. Zou, F. Deng, C. Ni, J. Hu, J. Giammarco. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater., 2014, 15: 014603.

[8] C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, M. G. Allen. Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators. Opt. Express, 2015, 23: 5491-5499.

[9] L. Tombez, E. Zhang, J. Orcutt, S. Kamlapurkar, W. Green. Methane absorption spectroscopy on a silicon photonic chip. Optica, 2017, 4: 1322-1325.

[10] D. D. Hickstein, H. Jung, D. R. Carlson, A. Lind, I. Coddington, K. Srinivasan, G. G. Ycas, D. C. Cole, A. Kowligy, C. Fredrick. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Phys. Rev. Appl., 2017, 8: 014025.

[11] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 2011, 5: 141-148.

[12] N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti. Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges. Opt. Express, 2010, 18: 26728-26743.

[13] Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, B. Luther-Davies. Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Opt. Lett., 2016, 41: 958-961.

[14] Y. Yu, X. Gai, P. Ma, D. Y. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, B. Luther-Davies. A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photon. Rev., 2014, 8: 792-798.

[15] M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, B. J. Eggleton. Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10/W/m) As2S3 chalcogenide planar waveguide. Opt. Express, 2008, 16: 14938-14944.

[16] X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang, B. Luther-Davies. Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide. Opt. Lett., 2012, 37: 3870-3872.

[17] TremblayJ.-E.LinY.-H.HsuP.-K.MalinowskiM.NovakS.QiaoP.Camacho-GonzalezG. F.Chang-HasnainC. J.RichardsonK.FathpourS., “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” in CLEO: Science and Innovations (Optical Society of America, 2017), paper SF1J.7.

[18] A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. Ding, C. Pantano. Planar chalcogenide glass waveguides for IR evanescent wave sensors. J. Non-Cryst. Solids, 2006, 352: 584-588.

[19] J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, K. Richardson. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express, 2007, 15: 2307-2314.

[20] J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. C. Kimerling. Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis. J. Lightwave Technol., 2009, 27: 5240-5245.

[21] K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, M. Richardson. Progress on the fabrication of on-chip, integrated chalcogenide glass (ChG)-based sensors. J. Nonlinear Opt. Phys. Mater., 2010, 19: 75-99.

[22] J. Charrier, M.-L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, V. Nazabal. Evanescent wave optical micro-sensor based on chalcogenide glass. Sens. Actuators B, 2012, 173: 468-476.

[23] P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies. Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt. Express, 2013, 21: 29927-29937.

[24] Z. Han, P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, D. Tan. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Appl. Phys. Lett., 2016, 108: 141106.

[25] H. Xu, X. Wan, Q. Ruan, R. Yang, T. Du, N. Chen, Z. Cai, Z. Luo. Effects of nanomaterial saturable absorption on passively mode-locked fiber lasers in an anomalous dispersion regime: simulations and experiments. IEEE J. Sel. Top. Quantum Electron., 2018, 24: 1100209.

[26] D. M. Kita, H. Lin, A. Agarwal, K. Richardson, I. Luzinov, T. Gu, J. Hu. On-chip infrared spectroscopic sensing: redefining the benefits of scaling. IEEE J. Sel. Top. Quantum Electron., 2017, 23: 5900110.

[27] H. Lin, Z. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, J. Hu. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics, 2017, 7: 393-420.

[28] KitaD.MirandaB.FavelaD.BonoD.MichonJ.LinH.GuT.HuJ., “Digital Fourier transform spectroscopy: a high-performance, scalable technology for on-chip spectrum analysis,” arXiv: 1802.05270 (2018).

[29] V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden. Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express, 2007, 15: 9205-9221.

[30] Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang. Low-loss photonic device in Ge-Sb-S chalcogenide glass. Opt. Lett., 2016, 41: 3090-3093.

[31] H. Zhang, Q. Bao, D. Tang, L. Zhao, K. Loh. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett., 2009, 95: 141103.

Qingyang Du, Zhengqian Luo, Huikai Zhong, Yifei Zhang, Yizhong Huang, Tuanjie Du, Wei Zhang, Tian Gu, Juejun Hu. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide[J]. Photonics Research, 2018, 6(6): 06000506.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!