中国激光, 2016, 43 (11): 1110001, 网络出版: 2016-11-10   

单光子模式激光测高探测概率模型与精度分析 下载: 884次

Detection Probability Model of Single-Photon Laser Altimetry and Its Range Accuracy
作者单位
武汉大学光电子信息学院, 湖北 武汉 430072
摘要
单光子模式激光测高仪具有灵敏度高、重复频率高、重量轻、体积小等诸多优势,其代表着新一代天基激光雷达的未来发展趋势。对常见的高斯回波波形,基于激光雷达方程、单光子探测器统计特性,建立了单光子回波探测概率模型,基于该模型进一步推导了测距误差的量化关系式,并利用蒙特卡罗方法对所建模型进行了仿真验证。理论分析和仿真计算表明:回波脉宽越窄,测距的系统误差和随机误差越小;回波强度越大,测距的随机误差减小,但系统误差增大。以均方根脉宽为1.5 ns的高斯回波为例,忽略噪声影响,当平均信号光子数为1时,单次测距系统误差约6 cm,随机误差约22 cm。
Abstract
Single-photon laser altimetry represents the future space-based lidar′s development trends. It has many advantages, such as high sensitivity, high repetition rate, light weight and small volume. For normal Gaussian echo signal, this work establishes the detection probablity model based on the lidar equation and the statistical property of single-photon detector. Then the quantitative relationship of ranging error is obtained. The model is simulated by Monte Carlo method. Results show that narrower pulse width can result in better accuracy and precision. Higher echo signal intensity can also lead to better precision, but it will bring about worse accuracy. Take the case of a Gaussian echo whose root-mean-square width is about 1.5 ns, when the mean number of signal photons is 1, the range accuracy is about 6 cm and the range precision is approximately 22 cm with a single shoot regardless of the noise.
参考文献

[1] McLennan D D. Ice, clouds and land elevation (ICESat-2) mission[J]. SPIE, 2010, 7826: 782610.

[2] Yu A W, Krainak M A, Harding D J, et al. Airborne lidar simulator for the lidar surface topography (LIST) mission[C]. 25th International Laser Radar Conference, 2010: 20100019566.

[3] Kwok R, Markus T, Morison J, et al. Profiling sea ice with a multiple altimeter beam experimental Lidar (MABEL)[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(5): 1151-1168.

[4] Awadallah M, Ghannam S, Abbott A L, et al. Active contour models for extracting ground and forest canopy curves from discrete laser altimeter data[C]. 13th International Conference on LiDAR Applications for Assessing Forest Ecosystems, 2013: SL2013-033.

[5] Herzfeld U C, McDonald B W, Wallin B F, et al. Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2109-2125.

[6] Moussavi M S, Abdalati W, Scambos T, et al. Applicability of an automatic surface detection approach to micro-pulse photon-counting lidar altimetry data: implications for canopy height retrieval from future ICESat-2 data[J]. International Journal of Remote Sensing, 2014, 35(13): 5263-5279.

[7] 姜海娇, 来建成, 王春勇, 等. 激光雷达的测距特性及其测距精度研究[J]. 中国激光, 2011, 38(5): 0514001.

    Jiang Haijiao, Lai Jiancheng, Wang Chunyong, et al. Research on ranging property of laser radar and its range accuracy[J]. Chinese J Lasers, 2011, 38(5): 0514001.

[8] Johnson S E, Nichols T L, Gatt P, et al. Range precision of direct-detection laser radar systems[C]. SPIE, 2004, 5412: 72-86.

[9] Oh M S, Kong H J, Kim T H, et al. Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode[J]. Optics Communications, 2010, 283(2): 304-308.

[10] Degnan J J. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements[J]. Journal of Geodynamics, 2002, 34(3-4): 503-549.

[11] 王 飞, 赵 远, 张 宇, 等. 激光脉冲强度对于盖革模式单光子探测测距精度影响的理论研究[J]. 光学学报, 2010, 30(10): 2771-2775.

    Wang Fei, Zhao Yuan, Zhang Yu, et al. Theoretical analysis of influence of laser signal strength on range precision in single photon ranging[J]. Acta Optica Sinica, 2010, 30(10): 2771-2775.

[12] Brenner A C, Zwally H J, Bentley C R, et al. The algorithm theoretical basis document for the derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights[R]. Greenbelt: NASA Goddard Space Flight Center, 2012.

[13] Kim S, Lee I, Kwon Y J. Simulation of a Geiger-mode imaging ladar system for performance assessment[J]. Sensors, 2013, 13(7): 8461-8489.

[14] Johnson S, Gatt P, Nichols T. Analysis of Geiger-mode APD laser radars[C]. SPIE, 2003, 5086: 359-368.

[15] Gardner C S. Ranging performance of satellite laser altimeters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 1061-1072.

[16] Fouche D G. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors[J]. Applied Optics, 2003, 42(27): 5388-5398.

[17] Zhang J S, Kerekes J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):726-730.

黄科, 李松, 马跃, 周辉, 易洪, 史光远. 单光子模式激光测高探测概率模型与精度分析[J]. 中国激光, 2016, 43(11): 1110001. Huang Ke, Li Song, Ma Yue, Zhou Hui, Yi Hong, Shi Guangyuan. Detection Probability Model of Single-Photon Laser Altimetry and Its Range Accuracy[J]. Chinese Journal of Lasers, 2016, 43(11): 1110001.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!