激光技术, 2018, 42 (5): 605, 网络出版: 2018-09-11   

基于温度场评估的激光熔覆顺序决策方法研究

Research of decision method of laser cladding sequence selection based on temperature field evaluation
作者单位
新疆大学 机械工程学院, 乌鲁木齐 830047
摘要
为了在激光熔覆再制造过程中得到更优的激光熔覆顺序选择决策方法, 采用有限元法对平面基材多道激光熔覆传热学模型的温度场瞬态解进行了理论分析, 并利用基于热电偶的测温系统验证了整个数值模拟过程的可靠性。提出了一种评估选择法, 即利用数值模拟来分析和评估基体瞬态温度场, 根据评估准则选择熔覆过程激光扫描顺序的轨迹优化方法。结果表明, 取得单向逐次和评估选择样件的实验硬度数据分别为625.38HV, 620.58HV, 623.34HV, 680.09HV, 673.58HV和683.01HV, 变形均值为0.9722mm和0.6458mm; 评估选择法有最均匀的温度场, 熔池周围有最大的温度梯度, 其能产生较大的熔覆层硬度及较小的组织尺度, 同时测量变形较小。该方法为激光熔覆的顺序选择提供了重要的参考价值。
Abstract
In order to obtain a better decision method of laser cladding sequence selection in laser cladding remanufacturing process, finite element method was used to analyze transient solution of temperature field of multichannel laser cladding heat transfer model of flat substrate. The reliability of whole numerical simulation process was verified by temperature measurement system based on thermocouple. An evaluation selection method was proposed. Numerical simulation was used to analyze and evaluate the transient temperature field of the matrix, and select laser scanning sequence during the cladding process according to evaluation criteria. It was the trajectory optimization method. The results show that experimental hardness data are 625.38HV, 620.58HV, 623.34HV, 680.09HV, 673.58HV and 683.01HV of one way successive method and evaluation selection method respectively. The average deformation values are 0.9722mm and 0.6458mm respectively. Evaluation selection method has the most uniform temperature field and the maximum temperature gradient around the pool, which can produce larger cladding layer hardness, smaller microstructure scale and smaller measurement deformation. This method provides an important reference value for sequential selection of laser cladding.
参考文献

[1] XU B Sh. Development status and prospect of green remanufacturing engineering[J]. Engineering Sciences, 2011, 13(1): 4-10(in Chinese).

[2] ZHANG A F,LI D Ch,LIANG Sh D, et al. Development of laser additive manufacturing of high-performance metal parts[J]. Aeronautical Manufacturing Technology, 2016, 517(22): 16-22(in Chinese).

[3] LUO K L,GUO Sh Q,HE Y, et al. Repairing TC4 titanium stator blade of aero-engine fan casing by laser cladding[J]. China Surface Engineering, 2015, 28(6): 141-146 (in Chinese) .

[4] HAN Y Y,LU J J,LI J F, et al. Lathe spindle remanufacturing based on laser cladding technology[J]. China Surface Engineering, 2015, 28(6): 147-153 (in Chinese) .

[5] SON S, KIM S, LEE K H. Path planning of multi-patched freeform surfaces for laser scanning[J]. The International Journal of Advanced Manufacturing Technology, 2003, 22(5): 424-435.

[6] DENG Sh Sh, YANG Y Q, LI Y, et al. Planning of area-partition scanning path and its effect on resi-dual stress of SLM molding parts[J]. Chinese Journal of Lasers, 2016, 43(12): 1202003 (in Chinese) .

[7] BIAN H Y, FAN Q Ch, LI Y, et al. Scan path generating method based on temperature subarea of laser deposition shaping[J]. Journal of Mechanical Engineering, 2015, 51(24): 57-62 (in Chinese) .

[8] XU H Y,LI T,LI H B, et al. Study on quality prediction and path selection of 316L laser cladding [J].Laser Technology, 2018,42(1): 53-59(in Chinese) .

[9] LI Sh Y,TIAN X G,LI Ch B. Study on wear-resistance and scanning path of laser alloying on end cap working face[J]. Chinese Journal of Lasers, 2013,40(2): 0203004 (in Chinese).

[10] LONG R Sh, LIU W J,BIAN H Y, et al. Effects of scanning methods on thermal stress during laser metal deposition shaping[J]. Journal of Mechanical Engineering, 2007, 43(11): 74-81 (in Chinese) .

[11] CHEN L, XIE P L. Theory and experimental research on controlling crack in double-scanning laser cladding process[J]. Transactions of the China Welding Institution, 2011, 32(2): 65-68 (in Chinese) .

[12] QUAN X M,DING L,WEI X. Analysis of temperature field of laser cladding Ni-based alloy[J]. Laser Technology, 2013, 37(4): 547-550 (in Chinese) .

[13] ZHAO H Y,SHU F Y,ZHANG H T, et al. Numerical simulation on temperature field of laser cladding based on birth-death element method[J]. Transactions of the China Welding Institution, 2010, 31(5): 81-84 (in Chinese) .

[14] LIU H,YU G,HE X L, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J]. Chinese Journal of Lasers, 2013, 40(12): 1203007 (in Chinese).

[15] WANG X L,SUN W L,ZHANG J J, et al. Study on damage boundary extraction and shape reduction of laser cladding parts[J]. Laser Technology, 2017, 41(5): 675-679 (in Chinese).

[16] HUANG Y,SUN W L,CHEN Y. Research on laser remanufacturing method of complex shaft parts based on NURBS interpolation[J]. Infrared and Laser Engineering, 2017, 46(5): 45-51 (in Chinese).

王亚晨, 孙文磊, 黄勇, 王鑫龙, 黄海博. 基于温度场评估的激光熔覆顺序决策方法研究[J]. 激光技术, 2018, 42(5): 605. WANG Yachen, SUN Wenlei, HUANG Yong, WANG Xinlong, HUANG Haibo. Research of decision method of laser cladding sequence selection based on temperature field evaluation[J]. Laser Technology, 2018, 42(5): 605.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!