强激光与粒子束, 2016, 28 (3): 033102, 网络出版: 2016-03-28  

THz固定无线链路在大气中的特性

Characteristics of fixed THz wireless links in atmosphere
王玉文 1,2,*董志伟 2,3周逊 3,4李瀚宇 2,3
作者单位
1 中国工程物理研究院 研究生部, 北京 100088
2 北京应用物理与计算数学研究所, 北京 100094
3 中国工程物理研究院 太赫兹研究中心, 四川 绵阳 621900
4 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
基于宽带太赫兹(THz)波的短距离宽带高数据率无线通讯是可行的。利用THz波大气传输衰减模型和经验的水汽连续体吸收,结合HITRAN数据库,发展了在THz频段电磁通信的一个新的传输模型,形成了对宽频THz波在地表真实大气中水平传输衰减、路径损耗和信道容量的数值模拟能力;提出了100~900 GHz频段的五个可行的通信信道。相比低于100 GHz的无线通信频带,虽然这五个信道具有的更大的自由传输衰减损耗,以及大气分子和水滴吸收衰减降低了通信数据率,但通过增加发射和接收天线增益,仍然可以在短距离实现THz低频带尤其是100~500 GHz的高数据率无线通讯。
Abstract
Broadband wireless access over short distances with fixed THz wireless links is very promising. A new model of atmospheric transmission of terahertz communication is developed based on the radiation transmission theory and the continuum absorption phenomenon using data from the HITRAN database. The attenuation, the path loss and the channel capacity of THz atmospheric propagation are investigated by means of numerical simulation. The THz wave atmospheric attenuation experimental results obtained with the THz-time domain spectroscopy (THz-TDS) technique is analyzed by this new model. The intensity and the location of the observed absorption lines are in good agreement with the spectral databases. Five channels ranging from 100 to 900 GHz are analyzed. Nevertheless, contrary to the wireless links in the lower GHz-bands, the transmittable data rates are reduced in this frequency range because of the high free-space path loss and attenuation due to molecules in air or water droplets. As demonstrated here, high transmission data rates larger than 10 Gbps can be reached via these channels within short distances if antennas with high gains are used.
参考文献

[1] Jansen C, Piesiewicz R, Mittleman D, et al. The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems[J]. IEEE Trans Antennas and Propagation, 2008, 56(5): 1413-1419.

[2] Akyildiz I F, Jornet J M, Han C. TeraNets: ultra-broadband communication networks in the terahertz band[J]. IEEE Wireless Communications, 2014, 21(4): 130-135.

[3] Inoue M, Hodono M, Oka M, et al. 16 Gbit/s wireless terahertz transmission at 300-GHz band using a polymeric thin-film antenna receiver with base-bandwidth enhancement circuits[C]//2014 Asia-Pacific Microwave Conference. 2014: 1076-1078.

[4] Song H J, Kim J Y, Ajito K, et al. 50-Gb/s direct conversion QPSK modulator and demodulator MMICs for terahertz communications at 300 GHz[J]. IEEE Trans Microwave Theory Technology, 2014, 62(3): 600-609.

[5] Jornet J M, Akyildiz I F. Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks[J]. IEEE Selected Areas in Communications, 2013, 31(12): 685-694.

[6] Liebe H J. MPM-an atmospheric millimeter-wave propagation model[J]. International Journal of Infrared and Millimeter Waves, 1989, 10(6), 631-650.

[7] Pardo J R, Cernicharo J, Serabyn E. Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications[J]. IEEE Trans Antennas and Propagation, 2002, 49(12):1683-1694.

[8] Slocum D M, Slingerland E J, Giles R H, et al. Atmospheric absorption of terahertz radiation and water vapor continuum effects[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 127: 49-63.

[9] Yang Yihong, Mandehgar M, Grischkowsky D. Determination of the water vapor continuum absorption by THz-TDS and molecular response theory[J]. Optics Express, 2014, 22(4): 4388-4403.

[10] 王玉文, 房艳燕, 董志伟, 等. 太赫兹波沿大气层倾斜路径的传输衰减[J]. 电波科学学报, 2015, 30(4): 783-788. (Wang Yuwen, Fang Yanyan, Dong Zhiwei, et al. Terahertz transmission attenuation along the atmospheric slant path. Chinese Journal of Radio Science, 2015, 30(4): 783-788)

[11] 李瀚宇,董志伟,周海京,等. 太赫兹电磁波大气吸收衰减逐线积分计算[J]. 强激光与粒子束, 2013, 25(6):1445-1449. (Li Hanyu, Dong Zhiwei, Zhou Haijing, et al. Calculation of atmospheric attenuation of THz electromagnetic wave through line by line integral. High Power Laser and Particle Beams, 2013, 25(6): 1445-1449)

[12] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN 2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy &Radiative Transfer, 2013, 130: 4-50.

[13] Pardo J R, Cernicharo J, Serabyn E. Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 68(4), 419-433.

[14] Siles G A, Riera J M, Garcia-del-Pino P. THz propagation research within the TERASENSE project: Atmospheric gases attenuation[C]//2010 Proceedings of the 4th European Conference on Antennas and Propagation. 2010: 1-5.

[15] Liebe H J, Hufford G A, Cotton M G. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz[C]//52nd Specialists' Meeting of the Electromagnetic Wave Propagation Panel. 1993.

[16] Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC[J]. Bulletin of the American Meteorological Society, 1998, 79(5): 831-844.

[17] Schneider T. Ultrahigh-bitrate wireless data communications via THz-links; Possibilities and challenges[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(2): 159-179.

[18] Mottonen V S, Raisanen A V. General-purpose fifth-harmonic waveguide mixer for 500-700 GHz[C]//34th European Microwave Conference. 2004, 3: 1145-1147.

王玉文, 董志伟, 周逊, 李瀚宇. THz固定无线链路在大气中的特性[J]. 强激光与粒子束, 2016, 28(3): 033102. Wang Yuwen, Dong Zhiwei, Zhou Xun, Li Hanyu. Characteristics of fixed THz wireless links in atmosphere[J]. High Power Laser and Particle Beams, 2016, 28(3): 033102.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!