激光与光电子学进展, 2016, 53 (3): 032701, 网络出版: 2016-03-04  

弱测量对多体簇态纠缠和保真度的保护

Protecting Entanglement and Fidelity of Cluster States by Weak Measurement and Reversal
作者单位
广东海洋大学理学院,广东 湛江 524088
引用该论文

黄江, 谢钦. 弱测量对多体簇态纠缠和保真度的保护[J]. 激光与光电子学进展, 2016, 53(3): 032701.

Huang Jiang, Xie Qin. Protecting Entanglement and Fidelity of Cluster States by Weak Measurement and Reversal[J]. Laser & Optoelectronics Progress, 2016, 53(3): 032701.

参考文献

[1] M A Nielsen, I L Chuang. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2002: 1-70.

[2] 黄江, 谢钦, 周凯伟, 等. 束缚纠缠的猝死与复活[J]. 激光与光电子学进展, 2015, 52(4): 042701.

    Huang Jiang, Xie Qin, Zhou Kaiwei, et al.. Sudden death and sudden birth of bound entanglement[J]. Laser & Optoelectronics Progress, 2015, 52(4): 042701.

[3] 李芳, 周瑶瑶, 贾晓军. 相干反馈控制实现两组份纠缠态光场纠缠增强[J]. 光学学报, 2014, 34(10): 1027001.

    Li Fang, Zhou Yaoyao, Jia Xiaojun. Entanglement enhancement of bipartite entangled states through coherent feedback control[J]. Acta Optica Sinica, 2014, 34(10): 1027001.

[4] 郑小兰, 张斌. 热库诱导的两比特量子纠缠与量子关联[J]. 光学学报, 2014, 34(1): 0127002.

    Zheng Xiaolan, Zhang Bin. Quantum entanglement and correlations between two qubits induced by a heat bath[J]. Acta Optica Sinica, 2014, 34(1): 0127002.

[5] C H Bennett, G Brassard, S Popescu, et al.. Purification of noisy entanglement and faithful teleportation via noisy channels [J]. Phys Rev Lett, 1996, 76(5): 722-725.

[6] S Mancini, R Bonifacio. Quantum Zeno-like effect due to competing decoherence mechanisms[J]. Phys Rev A, 2001, 64(4): 042111.

[7] J Z Hu, X B Wang, L C Kwek. Protecting two-qubit quantum states by pi-phase pulses[J]. Phys Rev A, 2010, 82(6): 062317.

[8] S Maniscalco, F Francica, R L Zaffino, et al.. Protecting entanglement via the quantum Zeno effect[J]. Phys Rev Lett, 2008, 100(9): 090503.

[9] R Filip. Screening of a qubit from the influence of a zero-temperature reservoir[J]. Phys Rev A, 2003, 67(1): 014308.

[10] Z L Cao, M Yang. Entanglement distillation for three-particle W class states[J]. J Phys B, 2003, 36(21): 4245-4253.

[11] X Xiao, M F Fang, Y L Li, et al.. Robust entanglement preserving by detuning in non-Markovian regime[J]. J Phys B, 2009, 42(23): 235502.

[12] A SaiToh, M Kitagawa. Numerical analysis of boosting scheme for scalable NMR quantum computation[J]. Phys Rev A, 2005, 71(2): 022303.

[13] S Das, G S Agarwal. Protecting bipartite entanglement by quantum interferences[J]. Phys Rev A, 2010, 81(5): 052341.

[14] P Zanardi, P Z Rasetti. Noiseless quantum codes[J]. Phys Rev Lett, 1997, 79(17): 3306-3309.

[15] L M Duan, G C Guo. Scheme for reducing decoherence in quantum computer memory by transformation to the coherencepreserving states[J]. Chin Phys Lett, 1997, 14(7): 488-491.

[16] Y S Kim, J C Lee, O Kwon, et al.. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal[J]. Nat Phys, 2012, 8(2): 117-120.

[17] X Xiao, Y L Li. Protecting qutrit-qutrit entanglement by weak measurement and reversal[J]. European Physical Journal D, 2013, 67(10): 204.

[18] X Xiao. Protecting qubit–qutrit entanglement from amplitude damping decoherence via weak measurement and reversal [J]. Physica Scripta, 2014, 89(6): 065102.

[19] Z X Man, Y J Xia, N B An. Enhancing entanglement of two qubits undergoing independent decoherences by local pre-and postmeasurements[J]. Phys Rev A, 2012, 86(5): 052322.

[20] S J Du, Y J Xia, D Y Duan, et al.. Optimizing quantum correlation dynamics by weak measurement in dissipative environment [J]. Chin Phys B, 2015, 24(4): 044205.

[21] X P Liao, M F Fang, J S Fang, et al.. Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement[J]. Chin Phys B, 2014, 23(2): 020304.

[22] R Raussendorf, H J Briegel. A one-way quantum computer[J]. Phys Rev Lett, 2001, 86(22): 5188-5191.

[23] R Raussendorf, D E Browne, H J Briegel. Measurement-based quantum computation on cluster states[J]. Phys Rev A, 2003, 68(2): 022312.

[24] S Bravyi, R Raussendorf. Measurement-based quantum computation with the toric code states[J]. Phys Rev A, 2007, 76(2): 022304.

[25] R Raussendorf, J Harrington, K Goyal. Topological fault-tolerance in cluster state quantum computation[J]. New Journal of Physics, 2007, 9: 1-24.

[26] G Vidal, R F Werner. A computable measure of entanglement[J]. Phys Rev A, 2002, 65(3): 032314.

[27] B Schumacher. Sending quantum entanglement through noisy channels[J]. Phys Rev A, 1996, 54(4): 2614-2628.

[28] P Badziag, M Horodecki, P Horordecki, et al.. Local environment can enhance fidelity of quantum teleportation[J]. Phys Rev A, 2000, 62(1): 012311.

黄江, 谢钦. 弱测量对多体簇态纠缠和保真度的保护[J]. 激光与光电子学进展, 2016, 53(3): 032701. Huang Jiang, Xie Qin. Protecting Entanglement and Fidelity of Cluster States by Weak Measurement and Reversal[J]. Laser & Optoelectronics Progress, 2016, 53(3): 032701.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!