激光与光电子学进展, 2016, 53 (3): 032701, 网络出版: 2016-03-04  

弱测量对多体簇态纠缠和保真度的保护

Protecting Entanglement and Fidelity of Cluster States by Weak Measurement and Reversal
作者单位
广东海洋大学理学院,广东 湛江 524088
摘要
研究了在振幅阻尼通道中,利用弱测量来保护簇态的纠缠和保真度。通过前置弱测量和后置弱测量反转操作,系统的退相干能够得到有效抑制,保真度明显提高。另外,系统的纠缠和保真度演化与弱测量强度P 的取值有关,在选择适当的P 值时,系统的纠缠和保真度能得到最佳的保护。
Abstract
The protection of entanglement and fidelity of cluster states under amplitude damping decoherence by means of weak measurement is investigated. Employing the prior weak measurement and post weak measurement reversal, the decoherence of system can be prohibited effectively, and the fidelity is improved obviously. Besides, the evolution of entanglement and fidelity are dependent on the weak measurement strength P. By choosing some proper values of P, the entanglement and fidelity can be protected optimally.
参考文献

[1] M A Nielsen, I L Chuang. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2002: 1-70.

[2] 黄江, 谢钦, 周凯伟, 等. 束缚纠缠的猝死与复活[J]. 激光与光电子学进展, 2015, 52(4): 042701.

    Huang Jiang, Xie Qin, Zhou Kaiwei, et al.. Sudden death and sudden birth of bound entanglement[J]. Laser & Optoelectronics Progress, 2015, 52(4): 042701.

[3] 李芳, 周瑶瑶, 贾晓军. 相干反馈控制实现两组份纠缠态光场纠缠增强[J]. 光学学报, 2014, 34(10): 1027001.

    Li Fang, Zhou Yaoyao, Jia Xiaojun. Entanglement enhancement of bipartite entangled states through coherent feedback control[J]. Acta Optica Sinica, 2014, 34(10): 1027001.

[4] 郑小兰, 张斌. 热库诱导的两比特量子纠缠与量子关联[J]. 光学学报, 2014, 34(1): 0127002.

    Zheng Xiaolan, Zhang Bin. Quantum entanglement and correlations between two qubits induced by a heat bath[J]. Acta Optica Sinica, 2014, 34(1): 0127002.

[5] C H Bennett, G Brassard, S Popescu, et al.. Purification of noisy entanglement and faithful teleportation via noisy channels [J]. Phys Rev Lett, 1996, 76(5): 722-725.

[6] S Mancini, R Bonifacio. Quantum Zeno-like effect due to competing decoherence mechanisms[J]. Phys Rev A, 2001, 64(4): 042111.

[7] J Z Hu, X B Wang, L C Kwek. Protecting two-qubit quantum states by pi-phase pulses[J]. Phys Rev A, 2010, 82(6): 062317.

[8] S Maniscalco, F Francica, R L Zaffino, et al.. Protecting entanglement via the quantum Zeno effect[J]. Phys Rev Lett, 2008, 100(9): 090503.

[9] R Filip. Screening of a qubit from the influence of a zero-temperature reservoir[J]. Phys Rev A, 2003, 67(1): 014308.

[10] Z L Cao, M Yang. Entanglement distillation for three-particle W class states[J]. J Phys B, 2003, 36(21): 4245-4253.

[11] X Xiao, M F Fang, Y L Li, et al.. Robust entanglement preserving by detuning in non-Markovian regime[J]. J Phys B, 2009, 42(23): 235502.

[12] A SaiToh, M Kitagawa. Numerical analysis of boosting scheme for scalable NMR quantum computation[J]. Phys Rev A, 2005, 71(2): 022303.

[13] S Das, G S Agarwal. Protecting bipartite entanglement by quantum interferences[J]. Phys Rev A, 2010, 81(5): 052341.

[14] P Zanardi, P Z Rasetti. Noiseless quantum codes[J]. Phys Rev Lett, 1997, 79(17): 3306-3309.

[15] L M Duan, G C Guo. Scheme for reducing decoherence in quantum computer memory by transformation to the coherencepreserving states[J]. Chin Phys Lett, 1997, 14(7): 488-491.

[16] Y S Kim, J C Lee, O Kwon, et al.. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal[J]. Nat Phys, 2012, 8(2): 117-120.

[17] X Xiao, Y L Li. Protecting qutrit-qutrit entanglement by weak measurement and reversal[J]. European Physical Journal D, 2013, 67(10): 204.

[18] X Xiao. Protecting qubit–qutrit entanglement from amplitude damping decoherence via weak measurement and reversal [J]. Physica Scripta, 2014, 89(6): 065102.

[19] Z X Man, Y J Xia, N B An. Enhancing entanglement of two qubits undergoing independent decoherences by local pre-and postmeasurements[J]. Phys Rev A, 2012, 86(5): 052322.

[20] S J Du, Y J Xia, D Y Duan, et al.. Optimizing quantum correlation dynamics by weak measurement in dissipative environment [J]. Chin Phys B, 2015, 24(4): 044205.

[21] X P Liao, M F Fang, J S Fang, et al.. Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement[J]. Chin Phys B, 2014, 23(2): 020304.

[22] R Raussendorf, H J Briegel. A one-way quantum computer[J]. Phys Rev Lett, 2001, 86(22): 5188-5191.

[23] R Raussendorf, D E Browne, H J Briegel. Measurement-based quantum computation on cluster states[J]. Phys Rev A, 2003, 68(2): 022312.

[24] S Bravyi, R Raussendorf. Measurement-based quantum computation with the toric code states[J]. Phys Rev A, 2007, 76(2): 022304.

[25] R Raussendorf, J Harrington, K Goyal. Topological fault-tolerance in cluster state quantum computation[J]. New Journal of Physics, 2007, 9: 1-24.

[26] G Vidal, R F Werner. A computable measure of entanglement[J]. Phys Rev A, 2002, 65(3): 032314.

[27] B Schumacher. Sending quantum entanglement through noisy channels[J]. Phys Rev A, 1996, 54(4): 2614-2628.

[28] P Badziag, M Horodecki, P Horordecki, et al.. Local environment can enhance fidelity of quantum teleportation[J]. Phys Rev A, 2000, 62(1): 012311.

黄江, 谢钦. 弱测量对多体簇态纠缠和保真度的保护[J]. 激光与光电子学进展, 2016, 53(3): 032701. Huang Jiang, Xie Qin. Protecting Entanglement and Fidelity of Cluster States by Weak Measurement and Reversal[J]. Laser & Optoelectronics Progress, 2016, 53(3): 032701.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!