中国光学, 2017, 10 (4): 514, 网络出版: 2017-08-30   

ZnS∶Cu电致发光电压传感器及其温度漂移补偿

ZnS∶Cu electroluminescent voltage sensor and its temperature drift compensation
作者单位
1 北京航空航天大学 仪器科学与光电工程学院光电工程系,北京 100191
2 上海科润光电技术有限公司,上海 201619
摘要
利用ZnS∶Cu电致发光粉末与环氧树脂胶混合,设计制作了一种梯形电极结构的电压传感单元,实现了电致发光电压传感器输出信号的温度漂移补偿。电致发光电压传感信号通过2根塑料光纤传输到2个硅光电探测器,并选择其开路电压作为传感器的输出信号。在同一外加电压条件下,梯形电极区域内的电场分布是不均匀的,因而不同场点的发光亮度不同。通过测量梯形电极区域内2个不同发光点的发光强度随外加电压的变化,并对两路输出电压传感信号进行数据拟合与计算,可获知被测电压的有效值,并可实现对输出信号温度漂移的补偿。在-40~60 ℃范围内,采用上述温度漂移补偿方法测量了有效值在0.7~1.5 kV范围内的工频电压,传感器输出信号的非线性误差低于1.6%,验证了该温度漂移补偿方法的有效性。
Abstract
A ladder-shaped voltage sensing unit is designed and fabricated using ZnS∶Cu powder and epoxy adhesive, and the temperature drift compensation of an electroluminescent voltage sensing signal is implemented. Two channels of electroluminescent voltage sensing signals are transmitted to two photo-detectors using two pieces of plastic optical fibers. Open circuit voltages of the two photo-detectors are used as output voltage sensing signals. The electric field distribution is non-uniform within the ladder-shaped electroluminescent voltage sensing unit, and thus the electroluminescent brightness is also non-uniform under a same applied voltage. AC voltage sensing signals can be obtained by measuring the electroluminescent brightness at two different positions on the ladder-shaped voltage sensing unit. The temperature drift compensation existing in output voltage sensing signal can be achieved by an optimal calculation and fitting of experimental data. 50 Hz AC voltage in the range of 0.7-1.5 kV is measured, and the nonlinear error is less than 1.6% in the range of -40-60 ℃. This result demonstrates the effectiveness of the proposed temperature drift compensation method.
参考文献

[1] LI CH SH. Optical voltage sensors: principle, problem and research proposal[J]. SPIE,2016,10158,2016: 101581N.

[2] 谢施君,汪海,曾嵘,等. 基于集成光学电场传感器的过电压测量技术[J]. 高电压技术,2016,42(9): 2929-2935.

    XIE SH J,WANG H,ZENG R,Overvoltage Measurement technique based on integrated optical electric field sensor[J]. High Voltage Engineering,2016,42(9): 2929-2935. (in Chinese)

[3] 李长胜,王伟岐. 基于电致发光效应的光学电压传感器[J]. 中国光学,2016,9(1): 30-40.

    LI CH SH,WANG W Q. Review of optical voltage sensor based on electroluminescent effect[J]. Chinese Optics,2016,9(1): 30-40. (in Chinese)

[4] 姚健,李长胜. 利用电致发光线的光学电压有效值传感器[J]. 光电子·激光,2013,24(1): 34-38.

    YAO J,LI CH SH. Optical measurement of effective ac voltage using the electroluminescent wire[J]. Journal of Optoelectronics·Laser,2013,24(1): 34-38. (in Chinese)

[5] 王伟岐,李长胜. 一种光电式电压传感器及其温度漂移补偿方法[J]. 光电子·激光,2015,26(9): 1671-1679.

    WANG W Q,LI CH SH. An optoelectronic voltage sensor and its compensation method for temperature drift[J]. Journal of Optoelectronics·Laser,2015,26(9): 1671-1679. (in Chinese)

[6] 陈佳,李长胜,郭素文,等. ZnS∶Cu电致发光薄膜的交流电压传感特性[J]. 激光杂志,2016,37(11): 6-9.

    CHEN J,LI CH SH,GUO S W,et al.. AC voltage sensing performance of electroluminescent ZnS∶Cu film[J]. Laser Journal,2016,37(11): 6-9. (in Chinese)

[7] 毛清华,刘军林,全知觉,等. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响[J]. 物理学报,2015,64(10): 107801.

    MAO Q H,LIU J L,QUAN ZH J,et al.. Influences of p-type layer structure and doping profile on the temperature dependence of the forward voltage characteristic of GaInN light-emitting diode [J]. Acta Physica Sinica,2015,64(10): 107801. (in Chinese)

[8] 徐叙瑢,苏勉曾. 发光学与发光材料[M]. 北京: 化学工业出版社,2004: 388-425.

    XU X R,SU M Z. Luminescence and Luminescent Materials[M]. Beijing: Chemical Industry Press,2004: 388-425. (in Chinese)

[9] 钟国柱. II-VI族化合物薄膜电致发光[J]. 发光学报,2006,27(1): 6-17.

    ZHONG G ZH. Thin film electroluminescence in II-VI compounds[J]. Chinese Journal of Luminescence,2006,27(1): 6-17. (in Chinese)

[10] 许少辉,周雅伟,赵晓鹏. 无机粉末电致发光材料的研究进展[J]. 材料导报,2007,21: 162-166.

    XU SH H,ZHOU Y W,ZHAO X P. Research and development of inorganic powder EL materials[J]. Materials Review,2007,21: 162-166. (in Chinese)

[11] 徐家跃. 发光材料及其新进展[J]. 无机材料学报,2016,31(10): 1009-1012.

    XU J Y.Recent developments of luminescent materials[J]. Journal of Inorganic Materials,2016,31(10): 1009-1012. (in Chinese)

[12] 刘泽明,徐建萍,李霖霖,等. 聚合物/碳量子点复合EL器件及光谱移动机理[J]. 发光学报,2016,37(7): 823-828.

    LIU Z M,XU J P,LI L L,et al. Polymer/Carbon quantum dots composite EL devices and tunable spectra mechanism[J]. Chinese Journal of Luminescence,2016,37(7): 823-828. (in Chinese)

[13] 赵辉,侯延冰,何大伟,等. ZnS∶Cu的电致发光特性[J]. 北方交通大学学报,2001,25(3): 67-69.

    ZHAO H,HOU Y B,HE D W,et al.. Electroluminescent characters of ZnS∶Cu[J]. Journal of Northern Jiaotong University,2001,25(3): 67-69. (in Chinese)

[14] 王辉,孟令国,梁志虎,等. ZnS∶Cu粉末交流电致发光器件特性研究[J]. 真空电子技术,2008(6): 1-4.

    WANG H,MENG L G,LIANG ZH H. An investigation on ac electroluminescent properties of ZnS∶Cu powder[J]. Vacuum Electronics,2008(6): 1-4. (in Chinese)

[15] HAYT W H,BUCK J A. Engineering Electromagnetics[M]. Beijing: Tsinghua University Press,2009.

[16] 庄哲民,黄惟一,刘少强. 提高传感器精度的神经网络方法[J]. 计量学报,2002,23(1): 78-80.

    ZHUANG ZH M,HUANG W Y,LIU SH Q. Transducer accuracy enhancement using neural networks[J]. Acta Metrological Sinica,2002,23(1): 78-80. (in Chinese)

李长胜, 陈佳, 王伟岐, 郑岩. ZnS∶Cu电致发光电压传感器及其温度漂移补偿[J]. 中国光学, 2017, 10(4): 514. LI Chang-sheng, CHEN Jia, WANG Wei-qi, ZHENG Yan. ZnS∶Cu electroluminescent voltage sensor and its temperature drift compensation[J]. Chinese Optics, 2017, 10(4): 514.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!