光子学报, 2019, 48 (9): 0926001, 网络出版: 2019-10-12  

基于有限元仿真的硅基纳米光镊结构的设计

Design of Siliconbased Nanooptical Tweezers Based on Finite Element Simulation
作者单位
华中科技大学 材料科学与工程学院 连接与电子封装中心, 武汉 430074
引用该论文

高奎, 宋五洲, 朱晨俊, 夏蒙柔. 基于有限元仿真的硅基纳米光镊结构的设计[J]. 光子学报, 2019, 48(9): 0926001.

GAO Kui, SONG Wuzhou, ZHU Chenjun, XIA Mengrou. Design of Siliconbased Nanooptical Tweezers Based on Finite Element Simulation[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0926001.

参考文献

[1] ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156159.

[2] 胡朝晖, 王佳, 梁晋文. 远场光钳与近场光钳的发展[J]. 光学技术, 2003, 29(3): 266269.

    HU Chaohui, WANG Jia, LIANG Jinwen. Development of farfield optical tweezers and nearfield optical tweezers[J]. Optical Technique, 2003, 29(3): 266269

[3] 刘炳辉, 杨立军, 王扬, 等. 光纤探针型近场光镊光阱力特性研究[J]. 光子学报, 2011, 40(3): 363369.

    LIU Binghui, YANG Lijun, WANG Yang, et al. Nanomanipulation of nearfield optical tweezers using a fiber probe[J]. Acta Photonica Sinica, 2011, 40(3): 363369.

[4] 豆秀婕, 闵长俊, 张聿全, 等. 表面等离激元光镊技术[J]. 光学学报, 2016, 36(10): 297318.

    DOU Xiujie, MIN Changjun, ZHANG Yuquan, et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 2016, 36(10): 297318.

[5] 罗道斌, 韩香娥, 段璐杰. 温度变化环境中Au纳米球光学性质的研究[J]. 光子学报, 2016,46(6): 0616008.

    LUO Daobin, HAN Xiange, DUAN Lujie. Study of optical properties of au nadospheres in the ambient medium with temperature changing[J]. Acta Photonica Sinica, 2016, 46(6): 0616008.

[6] SCHULLER J A, ZIA R, TAUBNER T, et al. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles[J]. Physical Review Letters, 2007, 99(10): 107401.

[7] BRONSTRUP G, JAHR N, LEITERER C, et al. Optical properties of individual silicon nanowires for photonic devices[J]. Acs Nano, 2010, 4(12): 71137122.

[8] EVLYUKHIN A B, REINHARDT C, SEIDEL A, et al. Optical response features of Sinanoparticle arrays[J]. Physical Review B, 2010, 82(4): 21812188.

[9] GARCIAETXARRI A, et al. Strong magnetic response of submicron silicon particles in the infrared[J]. Optics Express, 2011, 19(6): 48154826.

[10] 解亚明. 纳米颗粒体系中光散射模式的耦合[D]. 合肥: 中国科学技术大学,2017.

    JIE Yaming. The coupling among different light scattering modes of a system of nanoparticles[D]. Hefei: University of Science and Technology of China, 2017.

[11] KUZNETSOV A I , MIROSHNICHENKO A E , BRONGERSMA M L, et al. Optically resonant dielectric nanostructures[J]. Science, 2016, 354(6314): 24722472.

[12] ANNE V D H M , JORIK V D G , BRENNY B J M , et al. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders[J]. Optics Express, 2016, 24(3): 20472064.

[13] STAUDE I , MIROSHNICHENKO A E , DECKER M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 2013, 7(9): 78247832.

[14] GENOV D A , SARYCHEV A K , SHALAEV V M, et al. Resonant field enhancements from metal nanoparticle arrays[J]. Nano Letters, 2004, 4(1): 153158.

[15] FAN J A , WU C , BAO K, et al. Selfassembled plasmonic nanoparticle clusters[J]. Science, 2010, 328(5982): 11351138.

[16] JAIN P K , HUANG W , ELSAYED M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation[J]. Nano Letters, 2007, 7(7): 20802088.

[17] 张位春. 金属纳米颗粒光热性质研究[D].杭州:浙江大学, 2014.

    ZHANG Weichun. Research on the photothermal properties of metal nanoparticles[D]. Hangzhou: Zhejiang University, 2014.

高奎, 宋五洲, 朱晨俊, 夏蒙柔. 基于有限元仿真的硅基纳米光镊结构的设计[J]. 光子学报, 2019, 48(9): 0926001. GAO Kui, SONG Wuzhou, ZHU Chenjun, XIA Mengrou. Design of Siliconbased Nanooptical Tweezers Based on Finite Element Simulation[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0926001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!