光子学报, 2019, 48 (9): 0926001, 网络出版: 2019-10-12  

基于有限元仿真的硅基纳米光镊结构的设计

Design of Siliconbased Nanooptical Tweezers Based on Finite Element Simulation
作者单位
华中科技大学 材料科学与工程学院 连接与电子封装中心, 武汉 430074
摘要
针对金属表面等离激元光镊热损耗问题, 设计了一种硅基双纳米柱加纳米环的光镊结构.通过有限元仿真在1 064 nm入射光场下计算了三种不同硅基纳米结构(硅基纳米球、纳米柱、纳米环)的场增强效果.利用硅基纳米结构光学共振机理, 设计了一种电场增强倍数达到7.39倍的硅基双纳米柱光镊结构.在此基础上, 增加纳米环使光镊结构的环中心与双纳米柱间隙产生光学共振耦合现象, 得到的电场增强倍数高达11.9倍, 形成了稳定的光学势阱.最后采用麦克斯韦应力张量法对硅基光镊中不同直径的聚苯乙烯小球进行了捕获分析, 并在x、y、z方向上计算分析了直径为25 nm的聚苯乙烯小球在不同位置的捕获力、捕获势能以及捕获刚度.设计的硅基纳米双圆柱加纳米环的光镊结构能够对聚苯乙烯小球起到良好的捕获效果.
Abstract
To solve the heat loss of the surface plasmon optical tweezers, an optical tweezers of siliconbased doublenanocylinder with nanoring is designed. The field enhancement effects of three different siliconbased nanostructures (siliconbased nanosphere, nanocylinder and nanoring) were calculated by finite element simulation at 1 064 nm incident light field. Then, according to the optical resonance mechanism of siliconbased nanostructures, a siliconbased doublenanocylinder optical tweezers with an electric field enhancement factor of 7.39 times is designed. On this basis, optical resonance coupling is generated between the center of the ring and the gap between the double nanocolumn of the optical tweezers by introducing nanoring to the optical tweezers, which makes the electric field enhancement factor reaches up to 11.9 times and forms a stable optical potential well. Finally, Maxwell's stress tensor method was used to capture and analyze polystyrene beads of different diameters in siliconbased optical tweezers. And the trapping force, trapping potential and capture stiffness of polystyrene spheres with a diameter of 25 nm at different positions were calculated and analyzed in the x, y and z directions. The designed optical tweezers of siliconbased nanocylindrical and nanorings can achieve good results for the capture of polystyrene spheres.
参考文献

[1] ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156159.

[2] 胡朝晖, 王佳, 梁晋文. 远场光钳与近场光钳的发展[J]. 光学技术, 2003, 29(3): 266269.

    HU Chaohui, WANG Jia, LIANG Jinwen. Development of farfield optical tweezers and nearfield optical tweezers[J]. Optical Technique, 2003, 29(3): 266269

[3] 刘炳辉, 杨立军, 王扬, 等. 光纤探针型近场光镊光阱力特性研究[J]. 光子学报, 2011, 40(3): 363369.

    LIU Binghui, YANG Lijun, WANG Yang, et al. Nanomanipulation of nearfield optical tweezers using a fiber probe[J]. Acta Photonica Sinica, 2011, 40(3): 363369.

[4] 豆秀婕, 闵长俊, 张聿全, 等. 表面等离激元光镊技术[J]. 光学学报, 2016, 36(10): 297318.

    DOU Xiujie, MIN Changjun, ZHANG Yuquan, et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 2016, 36(10): 297318.

[5] 罗道斌, 韩香娥, 段璐杰. 温度变化环境中Au纳米球光学性质的研究[J]. 光子学报, 2016,46(6): 0616008.

    LUO Daobin, HAN Xiange, DUAN Lujie. Study of optical properties of au nadospheres in the ambient medium with temperature changing[J]. Acta Photonica Sinica, 2016, 46(6): 0616008.

[6] SCHULLER J A, ZIA R, TAUBNER T, et al. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles[J]. Physical Review Letters, 2007, 99(10): 107401.

[7] BRONSTRUP G, JAHR N, LEITERER C, et al. Optical properties of individual silicon nanowires for photonic devices[J]. Acs Nano, 2010, 4(12): 71137122.

[8] EVLYUKHIN A B, REINHARDT C, SEIDEL A, et al. Optical response features of Sinanoparticle arrays[J]. Physical Review B, 2010, 82(4): 21812188.

[9] GARCIAETXARRI A, et al. Strong magnetic response of submicron silicon particles in the infrared[J]. Optics Express, 2011, 19(6): 48154826.

[10] 解亚明. 纳米颗粒体系中光散射模式的耦合[D]. 合肥: 中国科学技术大学,2017.

    JIE Yaming. The coupling among different light scattering modes of a system of nanoparticles[D]. Hefei: University of Science and Technology of China, 2017.

[11] KUZNETSOV A I , MIROSHNICHENKO A E , BRONGERSMA M L, et al. Optically resonant dielectric nanostructures[J]. Science, 2016, 354(6314): 24722472.

[12] ANNE V D H M , JORIK V D G , BRENNY B J M , et al. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders[J]. Optics Express, 2016, 24(3): 20472064.

[13] STAUDE I , MIROSHNICHENKO A E , DECKER M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 2013, 7(9): 78247832.

[14] GENOV D A , SARYCHEV A K , SHALAEV V M, et al. Resonant field enhancements from metal nanoparticle arrays[J]. Nano Letters, 2004, 4(1): 153158.

[15] FAN J A , WU C , BAO K, et al. Selfassembled plasmonic nanoparticle clusters[J]. Science, 2010, 328(5982): 11351138.

[16] JAIN P K , HUANG W , ELSAYED M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation[J]. Nano Letters, 2007, 7(7): 20802088.

[17] 张位春. 金属纳米颗粒光热性质研究[D].杭州:浙江大学, 2014.

    ZHANG Weichun. Research on the photothermal properties of metal nanoparticles[D]. Hangzhou: Zhejiang University, 2014.

高奎, 宋五洲, 朱晨俊, 夏蒙柔. 基于有限元仿真的硅基纳米光镊结构的设计[J]. 光子学报, 2019, 48(9): 0926001. GAO Kui, SONG Wuzhou, ZHU Chenjun, XIA Mengrou. Design of Siliconbased Nanooptical Tweezers Based on Finite Element Simulation[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0926001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!