强激光与粒子束, 2016, 28 (3): 033012, 网络出版: 2016-03-28  

铁电体移相器高功率微波应用研究

Ferroelectric phase shifter for high-power microwave application
作者单位
国防科学技术大学 光电科学与工程学院, 长沙 410073
摘要
为拓展高功率微波阵列天线的波束扫描范围,将铁电体移相器引入到高功率微波领域。分析铁电体移相器的工作原理,并研究其应用于高功率微波领域可能遇到的问题,利用时域有限差分法对高功率微波在铁电体材料中传播的简单模型进行分析,研究了微波功率及偏置电场对输出波形的影响,并进一步分析铁电体移相器应用于高功率微波领域的可行性。结果表明:在不考虑介质损耗的情形下,选择适当的铁电体材料可以在10 cm内实现L波段180°相移,同时传输效率达到90%以上。
Abstract
The ferroelectric phase shifter is studied for high-power microwave in order to expand beam scanning range. The operating principle of the ferroelectric-lens phase-scanning antenna is briefly introduced and several problems are discussed for high-power microwave application. The high-power microwave propagation in ferroelectrics is analyzed by means of finite difference time domain. In the end, the conclusion about the feasibility of ferroelectric phase shifter applying for high-power microwave is given. The results show that a phase shift of 180° can be achieved in this phase shifter with a length of 10 cm and the transmission efficiency is above 90% without dielectric loss at L wave band.
参考文献

[1] Fan Yuwei, Zhong Huihuang, Yang Hanwu, et al. Analysis and improvement of an X-band magnetically insulated transmission line oscillator[J]. J Appl Phys, 2008, 103(12): 123301-4.

[2] Zhang Jun, Zhong Huihuang, Jin Zhenxing, et al. Studies on efficient operation of an X-band oversized slow-wave HPM generator in low magnetic field[J]. IEEE Trans Plasma Science, 2009, 37(8): 1552-1557.

[3] Treado T A, Bolton R A, Hansen T A, et al. High-power, high-efficiency, injection-locked secondary-emission[J]. IEEE Trans Plasma Science, 1992, 20(3): 351-359.

[4] Benford J, Sze H, Woo W, et al. Phase locking of relativistic magnetrons[J]. Pys Rev Lett, 1989, 62(8): 969-971.

[5] Danilov E A, Kashin V A, Kovalev N F, et al. Variation in the electric length of a ferrite phase shifter transmitting high-power microwave pulses[J]. Journal of Communications Technology and Electronics, 2001, 46(8): 932-935.

[6] 宋玮, 黄文华, 李佳伟, 等. 高功率微波合成技术进展[J]. 现代应用物理, 2014, 5(1): 12-20.(Song Wei, Huang Wenhua, Li Jiawei, et al. Development of high power microwave combination technology[J]. Modern Applied Physics, 2014, 5(1): 12-20)

[7] 刘庆想, 葛名立, 袁成卫, 等. 一种新型高功率微波移相器[J]. 强激光与粒子束, 2005, 17(4): 569-574.(Liu Qingxiang, Ge Mingli, Yuan Chengwei, et al. A new kind of high power microwave phase shifter[J]. High Power Laser and Particle Beams, 2005, 17(4): 569-574)

[8] Zuo Xu, How H, Shi Ping, et al. Development of high frequency ferrite phase-shifter[J]. IEEE Trans Magnetics, 2001, 37(4): 2395-2397.

[9] 殷雄, 张厚, 王剑,等. 一种新型Radant透镜式移相器的研究[J]. 雷达科学与技术, 2009, 7(3): 222-226.(Yin Xiong, Zhang Hou, Wang Jian, et al. Research on a novel Radant lenticular phase-shifter[J]. Radar Science and Technology, 2009, 7(3): 222-226)

[10] Johnson K M. Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices[J]. J Appl Phys, 1962, 33(9): 2826-2831.

[11] Shlager K L, Schneider J B. A selective survey of the finite-difference time-domain literature[J]. IEEE Antennas Propagat Magazine, 1995, 37(4): 39-57.

王明阳, 袁成卫, 张强. 铁电体移相器高功率微波应用研究[J]. 强激光与粒子束, 2016, 28(3): 033012. Wang Mingyang, Yuan Chengwei, Zhang Qiang. Ferroelectric phase shifter for high-power microwave application[J]. High Power Laser and Particle Beams, 2016, 28(3): 033012.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!