Chinese Optics Letters, 2020, 18 (4): 041405, Published Online: Apr. 15, 2020   

Recent progress in multi-wavelength fiber lasers: principles, status, and challenges Download: 1313次

Author Affiliations
1 SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
Figures & Tables

Fig. 1. Applications of MWFL: (a) DWDM technology for an optical communication system, and (b) the multi-wavelength Raman fiber laser for long-distance simultaneous measurement of strain and temperature selected from Ref. [12]. (c) Phased array antenna system selected from Ref. [14]. (d) Microwave signal generation based on a multi-wavelength Brillouin fiber laser selected from Ref. [16].

下载图片 查看原文

Fig. 2. Multi-wavelength EDFL based on a phase modulator: (a) the schematic of the experimental setup; the output spectrum characteristics (b) without modulation feedback and (c) with modulation feedback. Selected from Ref. [24].

下载图片 查看原文

Fig. 3. Multi-wavelength operation based on the MZI filter effect: (a) the experimental schematic of an EDFL; (b) the comb filter transmission spectra; (c) the spectral characteristics of 14-wavelengths operation; (d) the spectral characteristics of 29-wavelengths operation. Selected from Ref. [27].

下载图片 查看原文

Fig. 4. MWFL based on the SMS interferometer: (a) the experimental schematic diagram of dual-wavelength EDFL; (b) the output spectral tunable dual-wavelength fiber laser. Selected from Ref. [30].

下载图片 查看原文

Fig. 5. Multi-wavelength fiber laser and the output characteristics: (a) the schematic diagram of dual-wavelength EDFL; (b) optical spectral evolution with different pump power; (c) the stability measurement of optical spectra. Selected from Ref. [66]. (d) The schematic diagram of multi-wavelength TDFL; (e) the stable tri-wavelength operation. Selected from Ref. [72].

下载图片 查看原文

Fig. 6. MWFL based on two types of intensity-dependent loss structures: (a) schematic of the NPR mode-locked TDFL; (b) working principle of the NPR structure. Selected from Ref. [78]. Two cases of output spectrum of MWFL based on NPR structures: (c) 22-wavelength operation; (d) 28-wavelength operation. Selected from Ref. [73]. (e) The experimental setup of the NALM structure. Output spectrum characteristics of EDFL based on the NALM structure at two different states by adjusting the PCs. Selected from Ref. [75]. (f) 41 wavelengths; (g) 50 wavelengths. Selected from Ref. [76].

下载图片 查看原文

Fig. 7. Multi-wavelength operation in the ring EDFL: (a) the experimental setup of backward pumping; (b) the experimental setup of forward pumping; (c) the output spectrum of forward and backward pumping. Selected from Ref. [83]. The multi-wavelength Brillouin–Raman fiber laser: (d) the experimental setup; (e) and (f) illustrations of multi-wavelength lasing spectra at different DCF lengths. The magnified views are shown in graphs on the right. Selected from Ref. [34].

下载图片 查看原文

Fig. 8. Spectrum characteristic of the dual-wavelength TDFL: (a) the three-states switchable dual-wavelength conventional soliton; (b) the numerical simulation transmission spectrum of the NPR; (c) the comparison between simulative and experimental results. Selected from Ref. [78].

下载图片 查看原文

Fig. 9. Schematic and laser characteristics of the NALM fiber laser: (a) the schematic diagram of a mode-locked Tm/Ho-doped fiber laser; (b)–(e) tunable multi-wavelength spectrum (left), corresponding pulse trace (middle), and single pulse (right); (f) and (g) show CW operation characteristics. Selected from Ref. [126].

下载图片 查看原文

Fig. 10. 2D materials. (a) The 2D family members. Selected from Ref. [135]. (b) The current dominant SAs for ultrashort-pulse generation. Selected from Ref. [136]. (c) The sketch map of the saturable absorption process in the BP. Selected from Ref. [154].

下载图片 查看原文

Fig. 11. Diverse methods of integration of CNT-/graphene-SAs into the resonant cavity: (a) sandwiched film between two fiber connectors; (b) in-fiber microfluidic channels; (c) PCFs filled by the SA; (d) D-shaped fiber; (e) tapered fiber; (f) fully integrated monolithic fiber laser. Selected from Ref. [177].

下载图片 查看原文

Fig. 12. Characteristics of dual-wavelength YDFL-based graphene SA (GSA): (a) microscopy image of tapered fiber-based GSA; (b) the schematic diagram of dual-wavelength YDFL; (c) the spectrum of dual-wavelength CW operation; (d) the spectrum of mode-locked operation; (e) the oscilloscope trace, inset: single-pulse envelope; (f) the RF spectrum. Selected from Ref. [196].

下载图片 查看原文

Fig. 13. TI-SA and characteristics of MWMLFL: (a) the solution of Bi2Se3/PVA; (b) Raman spectrum of Bi2Se3/PVA, inset: scanning electron microscope (SEM) image; (c) optical deposition process, inset: photo of the end of the fiber; (d) the saturable absorption characteristic of TI-SA; (e) the output spectrum under 116.2 mW pump power; (f) long-time output wavelength stability measurement of the tri-wavelength mode-locking operation over 9 h. Selected from Ref. [212].

下载图片 查看原文

Fig. 14. Output properties of dual-wavelength EDFL: (a) the spectrum of the dual-wavelength EDFL; (b) the pulse traces; (c) long-term output spectrum stability measurement. Selected from Ref. [224].

下载图片 查看原文

Fig. 15. Characteristics of BP nanoparticles (NPs): (a) the atomic force microscope (AFM) image; (b) height profiles of the sections marked in (a); (c) Raman spectrum; (d) the linear absorption spectrum; (e) the Z-scan measurements of BP-PMMA film; (f) the relation of normalized transmittance and intensity. Selected from Ref. [154].

下载图片 查看原文

Fig. 16. Output characteristics of tri-wavelength mode-locking based on the BP-SA: (a) the schematic of the EDFL; (b) the characteristics of the pulse trace (up) and spectrum (down); the emission spectrum of the EDF (c) without and (d) with BP-SA. Selected from Ref. [233].

下载图片 查看原文

Fig. 17. Schematic diagram and laser output characteristics of the fiber laser: (a) the schematic of the tri-wavelength mode-locked fiber laser; (b) the measured reflection spectra of three CFBGs; (c) the normalized absorption characteristic of the SWCNT-SA; (d) linear absorption characteristic of the SWCNT-SA; (e)–(g) the output spectrum and corresponding autocorrelation intensity trace of λ1, λ2, and λ3, respectively. Selected from Ref. [48].

下载图片 查看原文

Fig. 18. Switchable multi-wavelength mode-locked TDFL: (a) the experimental setup; the spectrum of the switchable tri-wavelength of (b) pair-by-pair and (c) one-by-one. Selected from Ref. [124]. (d) The schematic of the YDFL based on a graphene-oxide (GO)-SA, and spectral characteristics of tunable multi-wavelength DS; (e) the tunable single-wavelength spectra; (f) the wavelength-tunable dual-wavelength DSs; (g) the spectrum of spacing-tunable dual-wavelength DSs; (h) the switchable spectrum dynamics of tri-wavelength DSs by adjusting the orientation of the PC. Selected from Ref. [132].

下载图片 查看原文

Fig. 19. Laser characteristics of a bright–dark soliton pair based on NALM structures: (a) oscilloscope pulse traces and (b) the corresponding optical spectrum. Selected from Ref. [257]. The laser characteristics of the bright–dark pulse based on the ReS2SA: (c) the pulse trace of a bright pulse (up) and dark pulse (down) and (d) corresponding optical spectrum, respectively. Selected from Ref. [72].

下载图片 查看原文

Fig. 20. Schematic of cross-absorption modulation in graphene.

下载图片 查看原文

Fig. 21. Passively synchronized two-color fiber laser with the aid of SWCNTs: (a) the experimental setup of the fiber laser; (b) linear transmission of SWCNTs; (c) the intensity autocorrelations of the Er laser; (d) the intensity autocorrelations of the Yb laser; (e) the corresponding spectrum of the Er laser; (f) the corresponding spectrum of the Yb laser. Selected from Ref. [257].

下载图片 查看原文

Fig. 22. Passively synchronized two-color fiber laser based on the XPM effect: (a) the schematic diagram of the fiber laser; (b), (c) intensity autocorrelation trace (inset: corresponding spectrum) of the Er laser and Yb laser. Selected from Ref. [258].

下载图片 查看原文

Fig. 23. Dual-wavelength dual-loop cavity passively synchronized mode-locked fiber laser: (a) the schematic diagram of the experimental setup; the relation between repetition rates of Er- and Tm-doped cavities and Er-cavity length offset (b) with a common GSA in the public area and (c) with two independent GSAXPM in the different loops; (d) the central wavelengths versus the offset of Er-cavity length based on a common GSA; (e) the RF spectrum. Selected from Ref. [197].

下载图片 查看原文

Fig. 24. Synchronized dual-cavity two-color Q-switched EYDF laser: (a) the schematic of the experimental setup; (b) the energy level diagram of the EYDF; Q-switched traces under different pumps of (c) 1 μm and (d) 1.5 μm; optical spectra of (e) 1 μm and (f) 1.5 μm; the corresponding RF spectra of (g) 1 μm and (h) 1.5 μm. Selected from Ref. [260].

下载图片 查看原文

Fig. 25. Dual-wavelength Ho3+-doped fluoride fiber laser: (a) the experimental setup; (b) the energy level of the cascade transition process; (c) the illustration of laser upper-level populations of I65 and I57, respectively, and the temporal domain evolution of pulse intensity; the characteristics of optical and corresponding RF spectra (inserted) at the different pump powers of (d), (e) at 3.76 W and (f), (g) at 6.47 W, respectively. Selected from Ref. [261].

下载图片 查看原文

Fig. 26. Ultrashort-cavity fiber laser. Selected from Ref. [280].

下载图片 查看原文

Fig. 27. Schematic diagram of the intelligent MWMLFL.

下载图片 查看原文

Table1. Summary of the Multi-Wavelength Pulsed Lasers Based on a Real SA

Type of 2D MaterialsWork ModeIntegration MethodsWavelength Range (nm)Number of WavelengthsRepetition Rate (MHz)Pulse Duration (ps)Ref.
GrapheneMLPLD on taper1529–1535.448.0348.8[188]
GrapheneMLOptical deposition1061.8, 1068.821.781410[108]
GrapheneMLOptical deposition on fiber taper1031.43, 1034.94, 1038.4330.5574.6[189]
Graphene oxideMLGO-PVA film1056.5, 1062.3, 1069.5314.2340[80]
Graphene oxideMLGO-PVA film1572.93, 1588.37223.5412,200[132]
TI:Bi2Se3MLBi2Se3-PVA film1567.2, 1568, 1568.7, 1569.548.8322[67]
TI:Bi2Te3MLOptical deposition on fiber end1548, 1550, 155238.95∼30[212]
TMDs:WS2MLOptical deposition on fiber taper1568.55, 156922.1411[222]
TMDs:WS2MLPLD on taper1558.54, 1565.9928.830.6[224]
BPMLBP film1572.2, 1557.7, 1558.231.6516.99[233]
BPMLBP-PVA film1533, 1558220.80.7[234]
CNT+FBGMLCNT-PVA film1540, 1550, 156036.186.3, 6.7, 5.9[48]

查看原文

Table2. Summary of the MWFL Based on the Filter Effect in the Cavity

Working PrincipleWavelength Range (nm)Number of WavelengthsSpacing (nm)3 dB Linewidth (nm)Power Fluctuation (dB)Ref.Remark
MZI1558.6–1559.220.60.02<0.43[26]Wavelength tunable
MZI1545–1556290.4/0.8<1[27]Spacing tunable
MZI1534–1534.430.2<0.05<0.912[53]Wavelength switchable
SMS1560.8–1563.923.1<0.136<0.46[30]Wavelength tunable
SMS1894.17–1904.213∼5<0.04<2[57]
FBG1569.38–1569.62∼0.2[59]Wavelength tunable and switchable
FBG1559.80, 1560.65, 1561.2530.07[61]
NPR1550–1575280.80.04<0.2[73]Spacing tunable
NALM∼1967–1981420.33<1[75]
FWM1562–1605500.8<0.05[76]
FWM∼1555–1561.590.80.05<1.2[84]Spacing tunable
FWM1555.68–1561.4170.950.18[18]
SBS∼1561–15721111[86]Spacing tunable
Interaction of SRS, SBS, RS∼1555–15701950.16[34]Wavelength tunable

查看原文

Table3. Summary of the Multi-Wavelength Mode-Locked Lasers Based on NPR or NALM

StructureWavelength Range (nm)Number of WavelengthsRepetition Rate (MHz)Pulse Width (ps)Ref.Remark
NPR∼1040–1074336[31]Wavelength tunable
NPR1852/1862, 1863/1874, and 1874/188622.68[78]Wavelength switchable
NPR+ PS-LPFBG1031.48–1056.3232.5460[119]Wavelength tunable
NPR1902.5–1917.3314.71.36[121]
NPR1571.48/1584.15210.239.4/8.6[122]Spacing tunable
NPR∼1560–158577.445.68[123]Wavelength tunable and switchable
NPR1865–188732.68[124]Wavelength switchable
NALM1570–1604201.4345490[125]
NALM1935–195346.13700[126]Wavelength tunable
MZI modulation1545.52–1561.2851000014[29]Wavelength switchable

查看原文

Table4. Summary of the Dual-Cavity Two-Color Mode-Locked Lasers

TypeOperation ModeCentral Wavelength (nm)Repetition Rate (MHz)Pulse DurationRef.
Cross-absorption modulationSynchronized ML1067.1/1535.4813.086.1/2.1 ps[257]
Cross-absorption modulationSynchronized Q-switched1480/18500.024.9 μs[259]
XPMSynchronized ML1040/15402913/0.2 ps[258]
XPM + cross-absorption modulationSynchronized ML1558.5/193820.50.915/1.57 ps[197]
Gained Q-switchedSynchronized Q-switched1046/15460.01175.3/4.6 μs[260]
Gained Q-switchedSynchronized Q-switched2073.05/2954.70.1080.85/0.99 μs[261]

查看原文

Hualong Chen, Xiantao Jiang, Shixiang Xu, Han Zhang. Recent progress in multi-wavelength fiber lasers: principles, status, and challenges[J]. Chinese Optics Letters, 2020, 18(4): 041405.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!