半导体光电, 2016, 37 (2): 207, 网络出版: 2016-05-11  

空芯带隙型光子晶体光纤残余双折射特性研究

Characteristics of Residual Birefringence in Air-core Photonic-bandgap Fiber
作者单位
北京航空航天大学 仪器科学与光电工程学院, 北京 100191
摘要
建立了空芯带隙型光子晶体光纤残余双折射理论分析模型,采用全矢量有限元法研究了光纤残余双折射产生的原因,最后搭建实验平台对空芯带隙型光子晶体光纤的残余双折射进行测试,并对光纤双折射的波长依赖性和温度稳定性进行了探究。仿真与实验结果表明,纤芯残余形变是导致残余双折射的重要因素,残余双折射随纤芯椭圆率的增大而增大,同时残余双折射的波长依赖性显著,温度依赖系数为0.3×10-9/℃。
Abstract
The theoretical model of residual birefringence in air-core photonic-bandgap fiber (PBGF) was established, and full-vector finite element method was used to analyze the causes of introduction of residual birefringence. Finally, the experimental system was established to test the PBGF’s residual birefringence, and also its wavelength dependence and temperature stability were analyzed. Comparing the experiment with the simulation results, it was found that the core residual deformation of PBGF is an important factor leading to the residual birefringence, and the higher the elliptical core rate, the greater the birefringence. At the same time, a significant wavelength dependence of the residual birefringence on the wavelength is observed and the temperature dependent coefficient is 0.3×10-9/℃.
参考文献

[1] Roberts P J,Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres\[J\]. Opt. Express, 2005, 13(1): 236-244.

[2] Poletti F,Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications\[J\]. Nanophotonics, 2013, 2(5/6): 315-340.

[3] Kim H K,Digonnet M J F, Kino G S. Air-core photonic-bandgap fiber-optic gyroscope\[J\]. J. Lightwave Technol., 2006, 24(8): 3169.

[4] Zhang X L,Jin W, Ying D Q. Performance analysis of an optical passive ring-resonator gyro with a hollow-core photonic bandgap fiber sensing coil\[C\]// International Society for Optics and Photonics, 2010: 785324-785324-9.

[5] 李晶,王巍, 王学锋, 等. 光子晶体光纤陀螺光纤环偏振特性\[J\]. 中国惯性技术学报, 2014(3): 19.

    Li Jing,Wang Wei, Wang Xuefeng, et al. Polarization characteristics of FOG’s fiber coil based on photonic crystal fiber\[J\]. J. Chinese Inertial Technol., 2014( 3): 19.

[6] Roberts P J,Williams D P, Sabert H, et al. Design of low-loss and highly birefringent hollow-core photonic crystal fiber\[J\]. Opt. Express, 2006, 14(16): 7329-7341.

[7] Michieletto M,Lyngs J K, L gsgaard J, et al. Cladding defects in hollow core fibers for surface mode suppression and improved birefringence\[J\]. Opt. Express, 2014, 22(19): 23324-23332.

[8] Chen X,Li M J, Venkataraman N, et al. Highly birefringent hollow-core photonic bandgap fiber\[J\]. Opt. Express, 2004, 12(16): 3888-3893.

[9] Kim G,Hwang K, Lee K, et al. Experimental characterization of optical properties of an elliptical core photonic bandgap fibers with high birefringence\[C\]//36th European Conf. and Exhibition on Optical Communication. 2010: 1-3.

[10] Steel M J,White T P, Martijn de Sterke C, et al. Symmetry and degeneracy in microstructured optical fibers\[J\]. Opt. Lett., 2001, 26(8): 488-490

[11] 文帅川,黄勇林. 新型六角点阵光子晶体光纤的高双折射低损耗特性\[J\]. 半导体光电, 2013, 34(4):663-667.

    Wen Shuaichuan,Huang Yonglin. Characteristics of high birefringence and low loss of hexagonal lattice photonic crystal fibers\[J\]. Semiconductor Optoelectronics, 2013, 34(4):663-667.

[12] Amezcua Correa R,Broderick N N, Petrovich M N, et al. Comparison of mode properties of 7 and 19 cells core hollow-core photonic crystal fibers\[C\]//Optical Fiber Communication Conf., 2007: 1-3.

[13] Amezcua-Correa R,Broderick N G, Petrovich M N, et al. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation\[J\]. Opt. Express, 2007, 15(26): 17577-17586.

[14] Amezcua Correa R,Broderick N G, Petrovich M N, et al. Realistic designs of silica hollow-core photonic bandgap fibers free of surface modes\[C\]//Optical Fiber Communication Conference. Optical Society of America, 2006: OFC1.

[15] 陈明阳,张永康. 高双折射光子晶体光纤研究进展\[J\]. 半导体光电, 2010, 31(2):165-169.

    Chen Mingyang,Zhang Yongkang. Research progresses of highly birefringent photonic crystal fibers\[J\]. Semiconductor Optoelectronics, 2010, 31(2):165-169.

[16] Poletti F,Broderick N G, Richardson D, et al. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers\[J\]. Opt. Express, 2005, 13(22): 9115-9124.

[17] Fokoua E N,Richardson D J, Poletti F. Impact of structural distortions on the performance of hollow-core photonic bandgap fibers\[J\]. Opt. Express, 2014, 22(3): 2735-2744.

[18] Wegmuller M,Legré M, Gisin N, et al. Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550nm\[J\]. Opt. Express, 2005, 13(5): 1457-1467.

[19] Michie A, Canning J, Lyytikinen K, et al. Temperature independent highly birefringent photonic crystal fibre\[J\]. Opt. Express, 2004, 12(21): 5160-5165.

李彦, 王旭, 徐小斌, 王庆涛. 空芯带隙型光子晶体光纤残余双折射特性研究[J]. 半导体光电, 2016, 37(2): 207. LI Yan, WANG Xu, XU Xiaobin, WANG Qingtao. Characteristics of Residual Birefringence in Air-core Photonic-bandgap Fiber[J]. Semiconductor Optoelectronics, 2016, 37(2): 207.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!