激光与光电子学进展, 2019, 56 (2): 021603, 网络出版: 2019-08-01  

金属Ag固化过程中的空位形成研究 下载: 845次

Vacancy Formation During Solidification of Metal Ag
作者单位
1 扬州大学广陵学院, 江苏 扬州 225000
2 扬州大学物理科学与技术学院, 江苏 扬州 225002
引用该论文

张海燕, 汪丽春. 金属Ag固化过程中的空位形成研究[J]. 激光与光电子学进展, 2019, 56(2): 021603.

Haiyan Zhang, Lichun Wang. Vacancy Formation During Solidification of Metal Ag[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021603.

参考文献

[1] 陈冰, 朱卫华, 陈鹏, 等. 分子动力学模拟飞秒激光烧蚀CuZr非晶合金的机理[J]. 激光与光电子学进展, 2015, 52(4): 041406.

    Chen B, Zhu W H, Chen P, et al. Mechanism of femtosecond laser ablating CuZr amorphous alloy[J]. Laser & Optoelectronics Progress, 2015, 52(4): 041406.

[2] Asta M, Beckermann C, Karma A, et al. Solidification microstructures and solid-state parallels: recent developments, future directions[J]. Acta Materialia, 2009, 57(4): 941-971.

[3] Chernov A A. Notes on interface growth kinetics 50 years after Burton, Cabrera and Frank[J]. Journal of Crystal Growth, 2004, 264(4): 499-518.

[4] 朱成禹, 吕志伟, 何伟明, 等. 固体SBS介质与SBS相位共轭镜的全固化[J]. 激光与光电子学进展, 2006, 43(3): 65-68.

    Zhu C Y, Lü Z W, He W M, et al. Solid SBS media and entirely solidification of the SBS Phase-conjugation mirrors[J]. Laser & Optoelectronics Progress, 2006, 43(3): 65-68.

[5] Buta D, Asta M, Hoyt J J. Kinetic coefficient of steps at the Si(111) crystal-melt interface from molecular dynamics simulations[J]. The Journal of Chemical Physics, 2007, 127(7): 074703.

[6] Maltsev I, Mirzoev A, Danilov D, et al. Atomistic and mesoscale simulations of free solidification in comparison[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17(5): 055006.

[7] Gulam Razul M S, Hendry J G, Kusalik P G. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations[J]. The Journal of Chemical Physics, 2005, 123(20): 204722.

[8] Broughton J Q, Gilmer G H, Jackson K A. Crystallization rates of a Lennard-Jones liquid[J]. Physical Review Letters, 1982, 49(20): 1496-1500.

[9] Geysermans P, Gorse D, Pontikis V. Molecular dynamics study of the solid-liquid interface[J]. The Journal of Chemical Physics, 2000, 113(15): 6382-6389.

[10] Yang Y, Olmsted D L, Asta M, et al. Atomistic characterization of the chemically heterogeneous Al-Pb solid-liquid interface[J]. Acta Materialia, 2012, 60(12): 4960-4971.

[11] Yang G Q, Li J F, Shi Q W, et al. Structural and dynamical properties of heterogeneous solid-liquid Ta-Cu interfaces: a molecular dynamics study[J]. Computational Materials Science, 2014, 86: 64-72.

[12] Hoyt J J, Asta M. Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag[J]. Physical Review B, 2002, 65(21): 214106.

[13] Sun D Y, Asta M, Hoyt J J. Crystal-melt interfacial free energies and mobilities in FCC and BCC Fe[J]. Physical Review B, 2004, 69(17): 174103.

[14] Ashkenazy Y, Averback R S. Atomic mechanisms controlling crystallization behaviour in metals at deep under coolings[J]. Europhysics Letters, 2007, 79(2): 26005.

[15] Buta D, Asta M, Hoyt J J. Atomistic simulation study of the structure and dynamics of a faceted crystal-melt interface[J]. Physical Review E, 2008, 78(3): 031605.

[16] Piaggi P M, Parrinello M. Entropy based fingerprint for local crystalline order[J]. Journal of Chemical Physics, 2017, 147(11): 114112.

[17] Beckera C A, Asta M, Hoyt J J, et al. Equilibrium adsorption at crystal-melt interfaces in Lennard-Jones alloys[J]. The Journal of Chemical Physics, 2006, 124(16): 164708.

[18] Kerrache A, Horbach J, Binder K. Molecular-dynamics computer simulation of crystal growth and melting in Al50Ni50[J]. Europhysics Letters, 2008, 81(5): 58001.

[19] Qi C, Li J F, Xu B, et al. Atomistic characterization of solid-liquid interfaces in the Cu-Ni binary alloy system[J]. Computational Materials Science, 2016, 125: 72-81.

[20] Zhou L L, Yang R Y, Tian Z A, et al. Molecular dynamics simulation on structural evolution during crystallization of rapidly super-cooled Cu50Ni50 alloy[J]. Journal of Alloys and Compounds, 2017, 690: 633-639.

[21] Zheng X Q, Yang Y, Gao Y F, et al. Disorder trapping during crystallization of the B2-ordered NiAl compound[J]. Physical Review E, 2012, 85(4): 041601.

[22] Kramer M J, Mendelev M I, Napolitano R E. In situ observation of antisite defect formation during crystal growth[J]. Physical Review Letters, 2010, 105(24): 245501.

[23] Yang Y, Humadi H, Buta D, et al. Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts[J]. Physical Review Letters, 2011, 107(2): 025505.

[24] FrenkelJ. Kinetic theory of liquids[M]. New York: Dover Publications, 1955.

[25] Wilson H W. Reviews-On the velocity of solidification and viscosity of supercooled liquids[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1900, 50(303): 238-250.

[26] Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19.

[27] Nosé S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.

[28] Hoover W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697.

[29] Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190.

[30] Parinello M, Rahman A. Crystal structure and pair potentials: a molecular-dynamics study[J]. Physical Review Letters, 1980, 45(14): 1196-1199.

[31] Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B, 1986, 33(12): 7983-7991.

[32] Davidchack R L, Laird B B. Crystal structure and interaction dependence of the crystal-melt interfacial free energy[J]. Physical Review Letters, 2005, 94(8): 086102.

[33] Monk J, Yang Y, Mendelev M I, et al. Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015004.

[34] Mendelev M I, Rahman M J, Hoyt J J, et al. Molecular-dynamics study of solid-liquid interface migration in FCC metals[J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(7): 074002.

[35] Sun D Y, Asta M, Hoyt J J. Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations[J]. Physical Review B, 2004, 69(2): 024108.

[36] Ashkenazy Y, Averback R S. Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals[J]. Acta Materialia, 2010, 58(2): 524-530.

[37] Gao Y F, Yang Y, Sun D Y, et al. Molecular dynamics simulations of the crystal-melt interface mobility in HCP Mg and BCC Fe[J]. Journal of Crystal Growth, 2010, 312(21): 3238-3242.

张海燕, 汪丽春. 金属Ag固化过程中的空位形成研究[J]. 激光与光电子学进展, 2019, 56(2): 021603. Haiyan Zhang, Lichun Wang. Vacancy Formation During Solidification of Metal Ag[J]. Laser & Optoelectronics Progress, 2019, 56(2): 021603.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!