Photonics Research, 2020, 8 (3): 03000368, Published Online: Feb. 26, 2020   

Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams Download: 691次

Author Affiliations
1 Key Laboratory of Optoelectronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
2 Department of Applied Physics and Materials, Research Centre, The Hong Kong Polytechnic University, Hong Kong, China
3 National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
4 e-mail: shengquan@tju.edu.cn
5 e-mail: apafyan@polyu.edu.hk
6 e-mail: jqyao@tju.edu.cn
Figures & Tables

Fig. 1. (a) Schematic structure of the 3D GF photodetector. (b) SEM image of the 3D GF with the magnification scales of 100 μm and 10 μm. (c) Raman spectra of 3D GF (red line) and GO (blue line). (d) Absorption spectra of 3D GF (red line) and GO (blue line) over the range from 400 to 2200 nm. The inset pictures exhibit the 3D GF columnar. (e) FTIR spectrum of 3D GF ranging from 2.5 to 25 μm. (f) The THz-TDS spectrum of 3D GF ranging from 150 to 1000 μm.

下载图片 查看原文

Fig. 2. (a) Current–voltage (I–V) characteristics in the dark and with different illumination intensities of the 532 nm laser. (b) The logarithmic photoresponsivity (left) and detectivity (right) as a function of logarithmic optical power at 0.1 V bias voltage. Inset is noise-equivalent power (NEP) as a function of logarithmic optical power at the same condition. (c) Time response characteristic curves of the device at 0.5 V bias voltage. (d) Frequency response characteristic under 532 nm and 1064 nm lasers.

下载图片 查看原文

Fig. 3. Double-logarithmic coordinates’ photoresponsivities to laser power under (a) 10.6 μm, (b) 118 μm, and (c) 1.36 mm lasers at 0.1 V voltage. Corresponding insets are the switched photocurrent under different irradiances. (d) The broadband photoresponsivity over a wavelength range of 300–2200 nm under different bias voltages (0.06, 1, 5 V). Inset is the applified R within 1200 nm under 5 V voltage. (e) Multiple-wavelength switched photocurrent from 405 nm to 1.36 mm under 0.05 V bias voltage. (f) Full R spectrum (left) and β (right) as a function of wavelength at 0.05 V bias voltage.

下载图片 查看原文

Fig. 4. (a) Photocurrent generation schematic of the 3D GF PD under 532 mm laser illumination. The illumination is localized in the middle of the channel. The x axis forwards from the Au to Ti electrode along the device, and the photopotential generation model over the length of the device including electron temperature T(x), Seebeck coefficient S(x), and potential gradient ΔV(x)=ΔSΔT(x). (b) Energy band profile of Au/3D GF/Ti and Au/3D GF/Au devices. (c) I–V characteristics of Au/3D GF/Ti and Au/3D GF/Au structures. (d) I–V characteristics of Au/3D GF/Ti under different 532 nm laser illumination intensities. (e) The photocurrent responses of the two different Au/3D GF/Ti and Au/3D GF/Au devices under 532 nm illumination with irradiance of 50  mW·cm2 at 0.01 V bias voltage.

下载图片 查看原文

Fig. 5. (a) Temperature distributions of the device at dark and at laser illumination (532 nm, 1 mW). Inset: the MIR image of the device under dark and laser illumination. (b) The temperature (top) and photocurrent (bottom) curves as a function of time at 0.05 V positive bias voltage. (c) I–V characteristics at 532 nm laser of 50  mW/cm2 illumination under varying temperatures. (d) The photocurrent as a function of temperature from 130 K to 300 K at 50  mW/cm2 532 nm laser excitation under 0 V bias voltage.

下载图片 查看原文

Yifan Li, Yating Zhang, Yu Yu, Zhiliang Chen, Qingyan Li, Tengteng Li, Jie Li, Hongliang Zhao, Quan Sheng, Feng Yan, Zhen Ge, Yuxin Ren, Yongsheng Chen, Jianquan Yao. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams[J]. Photonics Research, 2020, 8(3): 03000368.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!