激光生物学报, 2019, 28 (5): 475, 网络出版: 2019-11-14  

CdS/ZnS量子点对秀丽隐杆线虫的生物安全性研究

Toxicity of CdS/ZnS Quantum Dots in vivo: a Caenorhabditis elegans Study
作者单位
西南科技大学生命科学与工程学院, 绵阳 621010
摘要
随着工农业的发展, 各类材料如纳米材料、重金属材料应用, 及其他一些生物质类材料的积累, 对生物体的生长发育和繁殖等都有着较明显的生理毒理效应。只有对这些材料的生物效应有了清楚的了解才能正确地使用而避免它对人体产生毒副作用。本试验以秀丽隐杆线虫为研究对象, 从生长发育到基因水平, 考察了CdS/ZnS量子点对的生物安全性。研究发现CdS/ZnS量子点暴露不仅对秀丽隐杆线虫的体长、头部摆动以及身体弯曲等生物行为有不同程度的抑制作用, 而且对线虫细胞毒性相关基因、胁迫相关基因以及细胞生长发育相关基因的表达也有一定的影响。当CdS/ZnS量子点的暴露浓度为3.33 nmol/L, 线虫体长、头部摆动以及身体弯曲分别从空白组的(0.64±0.072)mm, (55.94±7.17)次/min和(9.95±2.42)次/20 s降到(0.48±0.099)mm, (15.83±6.76)次/min和(7.72±1.12)次/20 s; 而GST-1, daf-21, HSP-16.4等基因表达分别增加了15.33, 19.51 和 35.01倍。本研究为量子点在应用过程中的生物安全性研究提供理论依据。
Abstract
With the rapid development of industrialization and urbanization, more and more materials including nanomaterials, heavy metals and biomass materials have been exposed in our life. In order to study the influencing mechanism of these materials in biological tissue, we investigated the biosafety of quantum dots materials. The aims were to assess physiological behavior and some gene expressions of Caenorhabditis elegans with quantum dots CdS/ZnS expoure. The results showed that the quantum dots inhited the biological behavior of Caenorhabditis elegans, and up-regulated the expression of some genes including the cytotoxic gene, stress-related gene and development related gene.The body length, head-swimming rate and body bending of C.elegans was down to (0.48±0.099) mm, (15.83±6.76) times/min and (7.72±1.12) times/20 s, from the control of (0.64±0.072) mm,(55.94±7.17) times/min and (9.95±2.42) times/20 s respectviely. And, the gene transcript of GST-1, daf-21, HSP-16.4 was up-regulation to 15.33, 19.51 and 35.01 folds respectviely with 3.33 nmol/L CdS/ZnS quantum dots exposure. This work highlights the utility of the Caenorhabditis elegans model as a multiflexible platform to allow noninvasively imaging and monitoring in vivo consequences of engineered nanomaterials.
参考文献

[1] QU Y, ZHOU Y L, LIU X F, et al. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism[J]. Nano Letters, 2011, 11(8): 3174-3183.

[2] ZHAO Y L, WU Q, WANG D Y. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans [J]. Biomaterials, 2016, 79(6): 15-24.

[3] VENERANDO A, MAGRO M, BARATELLA D, et al.Biotechnological applications of nanostructured hybrids of polyamine carbon quantum dots and iron oxide nanoparticles[J]. Amino Acids, 2019, 51(1): 1-11.

[4] RAJENDER G, GOSWAMI U, GIRI P K. Solvent dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells[J]. Journal of Colloid Interface Science, 2019, 541(9): 387-398.

[5] WANG L, YAN J. Superficial synthesis of photoactive copper sulfide quantum dots loaded nano-graphene oxide sheets combined with near infrared (NIR) laser for enhanced photothermal therapy on breast cancer in nursing care management[J]. Journal of Photochemistry & Photobiology, B: Biology, 2019, 192(3): 68-73.

[6] WANG S L, COLE I S, LI Q. The toxicity of graphene quantum dots[J]. RSC Advances, 2016, 6(92): 89867-89878.

[7] HSU P C, O’CALLAGHAN M, Al-SALIM N, et al. Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans [J].Environmental Toxicology and Chemistry, 2012, 31 (10): 2366-2374.

[8] WU Q, ZHI L, QU Y, et al. Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism[J]. Nanomedicine, 2016, 12 (5): 1175-1184.

[9] ZHOU Y F, WANG Q, SONG B, et al.A real-time documentation and mechanistic investigation of quantum dots-induced autophagy in live Caenorhabditis elegans [J]. Biomaterials, 2015, 72(10): 38-48.

[10] ZHAO Y L, WANG X, WU Q L, et al.Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans [J]. Journal of Hazardous Materials, 2015, 283(3): 480-489.

[11] BRENNER S. The genetics of Caenorhabditis elegans [J]. Genetics, 1974, 77(1): 71-94.

[12] WANG D Y. Biological effects, translocation, and metabolism of quantum dots in the nematode Caenorhabditis elegans [J]. Toxicology Research, 2016, 5(4): 1003-1011.

[13] JAGADEESANS, HAKKIM A. RNAi Screening: automated high-throughput liquid RNAi screening in Caenorhabditis elegans [J]. Current Protocols Molecular Biology, 2018, 124(1): 1-20.

[14] TIAN Y. Effects of Monocrotophos on the mRNA expression ofstress-related genes of Caenorhabditis elegons[J]. Periodical of Ocean University of China, 2012, 42(3): 50-56.

[15] THAMBIDURAI M, MUTHUKUMARASAMY N, AGILAN S, et al. Structural and optical characterization of Ni-doped CdS quantum dots[J]. Journal of Materials Science, 2010, 46 (9): 3200-3206.

[16] KANAGASUBBULAKSHMI S, GOWTHAM I, KADIRVELU K, et al. Biocompatible methionine-capped CdS/ZnS quantum dots for live cell nucleus imaging[J]. MRS Commnications, 2019, 9(1): 344-351.

[17] SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3 (6): 1101-1108.

[18] LIU Q N, ZHU B J, WANG L, et al. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization[J]. Journal of Invertebrate Pathology, 2013, 114 (3): 313-323.

[19] MUELLER N, NOWACK B. Exposure modeling of engineered nanoparticles in the environment[J]. Environmental Science & Technology, 2008, 42(12): 4447-4453.

[20] GOTTSCHALK F, SONDERER T, SCHOLZ R W.et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions[J].Environmental Science&Technology, 2009, 43(24): 9216-9222.

[21] DING X, WANG J, RUI Q, et al. Long-term exposure to thiolated graphene oxide in the range of mug/L induces toxicity in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2018, 616-617(5): 29-37.

[22] DAI J Y, LI J, ZHANG Q, et al. Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode[J]. Materials Letters, 2019, 236(3): 483-486.

[23] SCANDALIOS J G. Oxidative stress: molecular perception and transduction ofsignals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research, 2005, 38(7): 995-1014.

[24] XU X, CUI Z, WANG X, et al. Toxicological responses on cytochrome P450 and metabolic transferases in liver of goldfish (Carassius auratus) exposed to lead and paraquat[J]. Ecotoxicol Environmental Safety, 2018, 151(5): 161-169.

[25] WU T, XU H, LIANG X, et al. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles[J]. Chemosphere, 2019, 221(8): 8708-726.

[26] EZEMADUKA A N, WANG Y, LI X. Expression of CeHSP17 protein in response to heat shock and heavy metal ions[J]. Journal of Nematology, 2017, 49(3): 334-340.

[27] NOVILLO A, WON S J, LI C, et al.Changes in nuclear receptor and vitellogeningene expression in response to steroids and heavy metal in Caenorhabditis elegans [J]. Integrative and Comparative Biology, 2005, 45(1): 61-71.

张从芬, 房平昌, 高迎宾, 郑爽, 罗学刚. CdS/ZnS量子点对秀丽隐杆线虫的生物安全性研究[J]. 激光生物学报, 2019, 28(5): 475. ZHANG Congfen, FANG Pingchang, GAO Yingbin, ZHENG Shuang, LUO Xuegang. Toxicity of CdS/ZnS Quantum Dots in vivo: a Caenorhabditis elegans Study[J]. Acta Laser Biology Sinica, 2019, 28(5): 475.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!