Photonic Sensors, 2018, 8 (3): 03278, Published Online: Aug. 4, 2018   

Composite Sinusoidal Nanograting With Long-Range SERS Effect for Label-Free TNT Detection

Author Affiliations
Department of Electronic and Optical Engineering, Shijiazhuang Campus of Army Engineering University, Shijiazhuang 050003, China
Abstract
A composite one-dimensional (1D) Ag sinusoidal nanograting aiming at label-free surface enhanced Raman scattering (SERS) detection of TNT with robust and reproducible enhancements is discussed. 1D periodic sinusoidal SiO2 grating followed by Ag evaporation is proposed for the creation of reproducible and effective SERS substrate based on surface plasmon polaritons (SPPs). The optimal structure of 1D sinusoidal nanograting and its long-range SERS effect are analyzed by using the finite difference time domain (FDTD). Simulation SERS enhancement factor (EF) can be 5 orders of magnitude as possible. This SERS substrate is prepared by the interference photolithography technology, its SERS performance is tested by Rh6G detection experiments, and the actual test EF is about 104. The label-free SERS detection capacity of TNT is demonstrated in the experiment.
References

[1] C. Wang and C. X. Yu, “Analytical characterization using surface enhanced Raman scattering (SERS) and microfluidic sampling,” Nanotechnology, 2015, 26(9): 1-26.

[2] Q. L. Li, B. W. Li, and Y. Q. Wang, “Surface-enhanced Raman scattering microfluidic sensor,” Rsc Advances, 2013, 3(32): 13015–13026.

[3] C. Farcau and S. Astilean, “Periodically nanostructured substrates for surface enhanced Raman spectroscopy,” Journal of Molecular Structure, 2014, 1073(1073): 102–111.

[4] E. L. Holthoff, D. N. Stratis-Cullum, and M. E. Hankus, “A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering,” Sensors, 2011, 11(3): 2700–2714.

[5] S. Chang, H. Ko, S. Singamaneni, R. Gunawidjaja, and V. V. Tsukruk, “Nanoporous membranes with mixed nanoclusters for Raman-based label-free monitoring of peroxide compounds,” Analytical Chemistry, 2014, 81(14): 5740-5748.

[6] C. Li, C. L. Wu, J. S. Zheng, J. P. Lai, C. L. Zhang, Y. B. Zhao, et al., “LSPR sensing of molecular biothiols based on noncoupled gold nanorods,” Langmuir the Acs Journal of Surfaces & Colloids, 2010, 26(11): 9130-9135.

[7] D. E. Charles, D. Aheme, M. Gara, D. M. Ledwith, Y. K. Gunko, J. M. Kelly, et al., “Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing,” Acs Nano, 2010, 4(1): 55-64.

[8] M. S. Goh, Y. H. Lee, S. Pedireddy, I. Y. Phang, W. W. Tjiu, J. M. Rui, et al., “A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application,” Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(40): 1444-1–1444-9.

[9] Y. F. Fang, X. L. Cheng, C. Y. Zhang, and Y. Zhou, “Review on graphene based explosive sensors,” Chinese Journal of Energetic Materials, 2014, 22(1): 116-123.

[10] D. V. Petrov, A. R. Zaripov, and N. A. Toropov, “Enhancement of Raman scattering of a gaseous medium near the surface of a silver holographic grating,” Optics Letters, 2017, 42(22): 4728-4731.

[11] L. Chen and J. Choo, “Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips,” Electrophoresis, 2008, 29(9): 1815–1828.

[12] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, 1972, 6(12): 4370-4379.

[13] J. Tang, H. Guo, M. Chen, J. T Yang, and D. Tsoukalas, “Wrinkled Ag nanostructured gratings towards single molecule detection by ultrahigh surface Raman scattering enhancement,” Sensors & Actuators B Chemical, 2015, 218: 145-151.

[14] M. J. Banholzer, J. E. Millstone, L. Qin, and C. A. Mirkin, “Rationally designed nanostructures for surface-enhanced Raman spectroscopy,” Chemical Society Reviews, 2008, 37(5): 885-897.

[15] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Physical Review B, 1998, 58(11): 6779–6782.

[16] R. Gillibert, M. Sarkar, J. F. Bryche, J. Moreau, M. Besbes, G. Barbillon, et al., “Directional surface enhanced Raman scattering on gold nano-gratings,” Nanotechnology, 2016, 27(11): 115202-1–115202-9.

[17] T. W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Optics Express, 2005, 13(24): 9652–9659.

[18] A. Taflove and S. C. Hagness, Computational electrodynamics: the finite difference time domain method. Boston, USA: Artech House, 2005: 1-839.

[19] Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Svorcik, “Surface plasmon polaritons on silver gratings for optimal SERS response,” Journal of Physical Chemistry C, 2015, 119(17): 9506-9512.

Cheng XIAO, Zhibin CHEN, Mengze QIN, Dongxiao ZHANG, Lei FAN. Composite Sinusoidal Nanograting With Long-Range SERS Effect for Label-Free TNT Detection[J]. Photonic Sensors, 2018, 8(3): 03278.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!