光学学报, 2010, 30 (9): 2519, 网络出版: 2014-05-15  

新型低损耗塑料光纤结构优化的数值分析

Numerical Analysis of Structural Optimization of a Novel LowLossPlastic Optical Fiber
作者单位
燕山大学信息科学与工程学院, 河北 秦皇岛 066004
摘要
分析了具有反共振反射的蜘蛛网包层塑料空芯光纤在1.3 μm波段的损耗特性及其与结构参数的关系。将光纤包层等效为周期性多层膜,用渐近转移矩阵法进行数值模拟。为优化光纤结构参数,分析了包层层数N,高折射率层厚度d2和高、低折射率比值n2∶n1对损耗的影响。计算结果表明,随着N的增加,损耗首先快速下降最后达到一个固定值;模式损耗随d2的增加呈线形增大趋势,n2∶n1越大,反共振波长处的损耗越低。在此基础上,用模拟退火优化算法对空气层厚d1和纤芯半径rco进行了最优化求解。最后,用以上求得结构参数的优化组合即N=3,d2=2.648 μm,n2∶n1=1.49∶1.0,d1=3 μm和rco=100 μm,计算得到最低损耗是0.449 dB/km。
Abstract
Loss characteristics of antiresonant reflecting plastic optical fiber with cobweb structural cladding and its relationships with the structural parameters are analyzed in the wavelength 1.3 μm. The cladding of this optical fiber is equivalent to periodical multilayer films and numerically simulated by asymptotic transfer matrix method. The effects of the number of alternating layers N, the thickness of highindex layer d2 and index contrast n2∶n1 on the loss characteristics are analyzed to optimize the structural parameters. The numerical simulation results show that the mode loss decreases rapidly in the first and reaches a fixed value in the last as the N increases; the mode lesses increase linearly as the d2 increases; the larger the n2∶n1, the lower the loss at the anti resonant wavelength. On that basis, the thickness of the air layers d1 and the radius of the hollow core rco are optimized by simulated annealing optimization algorithm. Finally, by using above optimal combination of the structural parameters N3, d2=2.648 μm, n2∶n1=1.49∶1.0, d1=3 μm and rco=100 μm, the lowest loss calsulated is 0.449 dB/km。
参考文献

[1] 杨春, 孙小菡, 王云明 等. 1×7圆柱形混合棒塑料光纤耦合器[J]. 光学学报, 2001, 21(9): 1116~1122

    Yang Chun, Sun Xiaohan, Wang Yunming et al.. 1×7 cylindrical mixingrod plastic optical fiber coupler [J]. Acta Optica Sinica, 2001, 21(9): 1116~1122

[2] 于荣金. 塑料通信光纤[J]. 光电子·激光, 2002, 13(3): 315~320

    Yu Rongjin. Plastic optical fiber for communication [J]. Journal of Optoelectronics·Laser, 2002, 13(3): 315~320

[3] 张永生, 谢志国, 郑荣升 等. 聚合物光纤中的模式耦合及其对带宽的提高[J]. 中国激光, 2006,33(9): 1234~1238

    Zhang Yongsheng, Xie Zhiguo, Zheng Yongsheng et al.. Mode coupling in polymer optical fiber and its enhancement to transmission bandwidth [J]. Chinese J. Lasers 2006, 33(9): 1234~1238

[4] 于荣金, 张冰. 新一代塑料光纤及其功能开发[J]. 中国科学 E辑:技术科学, 2008, 38(5): 807~816

    Yu Rongjin, Zhang Bing. Functional exploration of plastic optical fiber of a new genenration [J]. Science in China Series E: Technological Sciences, 2008, 38 (5): 807~816〖LL〗

[5] M. Y. Chen, R. J. Yu, Z. G. Tian et al.. Optical and mechanical properties of hollowcore fibers with cobweb cladding structure [J]. Chin. Opt. Lett., 2006, 4(2): 63~65

[6] P. Yeh, A. Yariv, E. Marom. Theory of Bragg fiber [J]. J. Opt. Soc. Am., 1978, 68(9): 1196~1201

[7] Y. Yink, J. D. Ripin, S. Fan et al.. Guiding optical light in air using an alldielectric structure [J]. J. Lightwave Technol., 1999, 17(11): 2039~2041

[8] S. G. Johnson, M. Ibanescu, M. Skorobogatiy et al.. Lowloss asymtotically singlemode propagation in largecore Omniguide fibers [J]. Opt. Express, 2001, 9(13): 748~779

[9] B. Temelkuran, S. D. Hart, D. Benoit et al.. Wavelength scalable hollowcore optical fibers with large photonic bandgaps for CO2 laser transmision Perfect mirror extend hollowcore fiber and application: lowloss wave guides based on ornnidirectional[J]. Nature, 2002,420(6916): 650~653

[10] G. Dellemann, T. D. Engeness, M. Skorobogatiy et al.. mirrors can transport light of almost any wavelength[J]. Photon. Spectra, 2003, 37(June): 60~62

[11] A. Alexander, I. M. B, A. Martijn van Eijkelenborg et al.. Ring structures in microstructured polymer optical fibres [J]. Opt. Express. 2001 9 (13): 813~820

[12] A. Argyros, Eijkelenborg M A van, M. C. J. Large et al.. Hollowcore microstructured polymer optical fiber [J]. Opt. Lett., 2006, 31(2):172~174

[13] N. M. Litchinitser, A. K. Abeeluck, C. Headley et al.. Antiresonant Reflecting Photonic Crystal Optical Waveguides [J]. Opt. Lett., 2002,27(18): 1592~1594

[14] 龚纯, 王正林. 精通MATLAB最优化计算[M]. 北京:电子工业出版社, 2009, 160~174

    Gong Chun, Wang Zhenglin. Proficient in MATLAB optimization calculation [M]. Beijing: Publishing House of Elactronics Industry, 2009: 160~174

[15] 张晓娟, 赵建林, 崔莉 等. 一种高双折射光子晶体光纤的模式特性分析[J]. 光学学报, 2008, 28(7): 1379~1383

    Zhang Xiaojuan, Zhao Jianlin, Cui Li et al.. Analysis of mode properties of photonics crystal fiber with high birefringence [J]. Acta Optica Sinica, 2008, 28 (7): 1379~1383

[16] 卫延, 常德远, 郑凯 等. 光子晶体光纤的温度特性数值模拟[J]. 中国激光, 2007, 34(7): 945~951

    Wei Yan, Chang Deyuan, Zheng Kai et al.. Numerical simulation of temperature properties of photonics crystal fibers [J]. Chinese J. Lasers, 2007, 34(7): 945~951

陈宏志, 于荣金, 张庆辉. 新型低损耗塑料光纤结构优化的数值分析[J]. 光学学报, 2010, 30(9): 2519. Chen Hongzhi, Yu Rongjin, Zhang Qinghui. Numerical Analysis of Structural Optimization of a Novel LowLossPlastic Optical Fiber[J]. Acta Optica Sinica, 2010, 30(9): 2519.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!