光学学报, 2017, 37 (5): 0511001, 网络出版: 2017-05-05   

X光傅里叶变换关联成像赝热光源研究 下载: 706次

Research on Pseudo-Thermal Source of X-Ray Fourier-Transform Ghost Imaging
作者单位
1 上海大学理学院, 上海 200444
2 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
摘要
高质量赝热光源是实现X光关联成像技术在显微领域应用的关键。X光傅里叶变换关联成像的赝热光源通过随机孔屏调制X光获得, 在此基于统计光学分析了调制后X光散斑场的统计特性, 并通过数值模拟分析了随机孔屏参数对散斑场特性及成像质量的影响。结果表明, 随机孔屏引入的相位差变化为π时, 关联成像对比度达到最优值。对于振幅型随机孔屏, 成像对比度随着占空比的减小而增大; 对于相位型随机孔屏, 成像对比度随着占空比的减小而减小。实际X光傅里叶变换关联成像系统中使用的复振幅型随机分布金属孔屏, 通过选择合适的透过率和占空比可以实现高对比度关联成像。
Abstract
High quality pseudo-thermal sources are essential in X-ray ghost imaging microscopic applications. The pseudo-thermal source used in X-ray Fourier-transform ghost imaging is obtained by modulating X-ray with a screen full of randomly distributed holes. The statistical properties of the X-ray speckle fields are analyzed based on the statistical optics, and the influence of the screen parameters is explored by numerical simulations. Results show that the optimum contrast for ghost imaging can be achieved when the phase difference introduced by the screen is π. For random amplitude screens, the imaging contrast increases with the decrease of the duty cycle, while for random phase screens, the imaging contrast decreases with the decrease of the duty cycle. In practical X-ray Fourier-transform ghost imaging systems, the screen made of metal can be treated as a complex amplitude screen, and the high-contrast ghost imaging can be realized by choosing appropriate transmittance and duty cycle of the screen.
参考文献

[1] Martz H E, Logan C M, Schneberk D J, et al. X-ray imaging: fundamentals, industrial techniques, and applications[M]. Boca Raton: CRC Press, 2013.

[2] Larabell C A, Nugent K A. Imaging cellular architecture with X-rays[J]. Current Opinion in Structural Biology, 2010, 20(5): 623-631.

[3] 肖体乔, 谢红兰, 邓 彪, 等. 上海光源X射线成像及其应用研究进展[J]. 光学学报, 2014, 34(1): 0100001.

    Xiao Tiaoqiao, Xie Honglan, Deng Biao, et al. Advances in X-ray imaging of Shanghai Light Source and its applications[J]. Acta Optica Sinica, 2014, 34 (1): 0100001.

[4] Davis T J, Gao D, Gureyev T E, et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays[J]. Nature, 1995, 373: 595-598.

[5] Miao J, Charalambous P, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 1999, 400(6742): 342-344.

[6] Mancuso A P, Yefanov O M, Vartanyants I A. Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities[J]. Journal of Biotechnology, 2010, 149(4): 229-237.

[7] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用[J]. 物理学报, 2012, 61(21): 218702.

    Fan Jiadong, Jiang Huaidong. Coherent X-ray diffraction imaging technology and its applications in materials science and biology[J]. Acta Physica Sinica, 2012, 61(21): 218702.

[8] Tran C Q, Peele A G, Roberts A, et al. Synchrotron beam coherence: a spatially resolved measurement[J]. Optics Letters, 2005, 30(2): 204-206.

[9] Williams G J, Quiney H M, Dhal B B, et al. Fresnel coherent diffractive imaging[J]. Physical Review Letters, 2006, 97(2): 025506.

[10] Rodenburg J M, Hurst A C, Cullis A G, et al. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3): 034801.

[11] McNeil B. Free electron lasers: first light from hard X-ray laser[J]. Nature Photonics, 2009, 3: 375-377.

[12] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A: Atomic, Molecular & Optical Physics, 1995, 52(5): R3429.

[13] Bennink R S, Bentley S J, Boyd R W. "Two-photon" coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.

[14] Gatti A, Brambilla E, Bache M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 2004, 93(9): 093602.

[15] Cheng J, Han S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 2004, 92(9): 093903.

[16] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 2005, 30(18): 2354-2356.

[17] 汪凯戈, 曹德忠, 熊 俊. 关联光学新进展[J]. 物理, 2008, 37(4): 223-232.

    Wang Kaige, Cao Dezhong, Xiong Jun. Progress in correlated optics[J]. Physics, 2008, 37(4): 223-232.

[18] Ferri F, Magatti D, Gatti A, et al. High-resolution ghost image and ghost diffraction experiments with thermal light[J]. Physical Review Letters, 2005, 5893(18): 183602.

[19] Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 2012, 29(5): 782-789.

[20] Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging[J]. Physical Review A, 2013, 87(2): 117-122.

[21] Zhao C, Gong W, Chen M, et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 2012, 101(14): 141123.

[22] Yu H, Li E, Gong W, et al. Structured image reconstruction for three-dimensional ghost imaging lidar[J]. Optics Express, 2015, 23(11): 14541-14551.

[23] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 2016, 6: 26133.

[24] Shechtman Y, Gazit S, Szameit A, et al. Super-resolution and reconstruction of sparse images carried by incoherent light[J]. Optics Letters, 2010, 35(8): 1148-1150.

[25] Gong W, Han S. High-resolution far-field ghost imaging via sparsity constraint[J]. Scientific Reports, 2015, 5: 9280.

[26] Kittle D, Choi K, Wagadarikar A, et al. Multiframe image estimation for coded aperture snapshot spectral imagers[J]. Applied Optics, 2010, 49(36): 6824-6833.

[27] Liu Z, Tan S, Wu J, et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 2015, 6: 25718.

[28] Liu R, Zhang P, Zhou Y, et al. Super sub-wavelength patterns in photon coincidence detection[J]. Scientific Reports, 2013, 4: 4068.

[29] 吴 楠, 龚文林, 韩申生. 基于运动轨迹可调式随机相位板的赝热光鬼成像实验研究[J]. 光学学报, 2015, 35(7): 0711005.

    Wu Nan, Gong Wenlin, Han Shensheng. Pseudo-thermal photonghost imaging experimental research based on a random phase plate with adjustable trajectory[J]. Acta Optica Sinica, 2015, 35 (7): 0711005.

[30] 曹 飞, 石剑虹, 杨 莹, 等. 基于数字微镜器件的光子计数对应鬼成像[J]. 光学学报, 2016, 36(1): 0111004.

    Cao Fei, Shi Jianhong, Yang Ying, et al. Correspondence ghost imaging via photon counting based on digital micromirror device[J]. Acta Optica Sinica, 2016, 36(1): 0111004.

[31] Martienssen W, Spiller E. Coherence and fluctuations in light beams[J]. American Journal of Physics, 1964, 32(12): 919-926.

[32] Liu H, Cheng J, Han S. Cross spectral purity and its influence on ghost imaging experiments[J]. Optics Communications, 2007, 273(1): 50-53.

[33] Yu H, Lu R, Han S, et al. Fourier-transform ghost imaging with hard X-rays[J]. Physical Review Letters, 2016, 117(11): 113901.

[34] Goodman J W. Speckle phenomena in optics: theory and applications[M]. Atlanta: Roberts & Company Publishers, 2009: 18-21.

[35] Glauber R J. The quantum theory of optical coherence[J]. Physical Review, 1963, 130(6): 2529-2539.

赵鑫, 喻虹, 陆荣华, 谈志杰, 韩申生, 曹清. X光傅里叶变换关联成像赝热光源研究[J]. 光学学报, 2017, 37(5): 0511001. Zhao Xin, Yu Hong, Lu Ronghua, Tan Zhijie, Han Shensheng, Cao Qing. Research on Pseudo-Thermal Source of X-Ray Fourier-Transform Ghost Imaging[J]. Acta Optica Sinica, 2017, 37(5): 0511001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!