激光与光电子学进展, 2017, 54 (6): 061601, 网络出版: 2017-06-08  

Ag扩散对Ag/MgF2薄膜界面结构和光学性能的影响 下载: 532次

Influence of Ag Diffusion on Structure and Optical Property of Ag/MgF2 Film Interface
作者单位
1 太原理工大学物理与光电工程学院, 山西 太原 030024
2 太原理工大学材料科学与工程学院, 山西 太原 030024
摘要
采用密度泛函理论的第一性原理计算了不同Ag(111)/MgF2(001)薄膜界面结构的界面能,分析了薄膜界面稳定性。通过搭建Ag扩散的Ag(111)/MgF2(001)界面模型,研究了界面处Ag的扩散行为和扩散机理,分析了Ag扩散对薄膜光学性能的影响。结果表明,所建立的光滑界面模型的界面结构稳定。Ag(111)/MgF2(001)界面处的Ag扩散主要发生在表面层/次表面层,扩散的Ag与附近F,Mg之间存在弱共价键作用。Ag扩散使得薄膜光吸收增强,折射率减小;在可见光波段,折射率有较大幅度减小。
Abstract
The interface energies of different Ag(111)/MgF2(001) film interface structures are calculated based on the first-principle of density functional theory, and the stability of film interfaces is analyzed. The Ag(111)/MgF2(001) interface model with Ag diffusion is built to study the Ag diffusion behavior and mechanism at the interface. The influence of Ag diffusion on optical property of films is analyzed. The results show that the interface structure of the built smooth-interface-model is stable. The Ag diffusion at the Ag(111)/MgF2(001) interface mainly occurs at the surface/subsurface layers. The interaction between the diffused Ag and nearby F and Mg is weakly covalent. The Ag diffusion makes film optical absorption increase and the refractive index decrease, especially in the visible light wavelength region, the reduction of the refractive index is more obvious.
参考文献

[1] Klinger R E, Carniglia C K. Optical and crystalline inhomogeneity in evaporated zirconia films[J]. Applied Optics, 1985, 24(19): 3184-3187.

[2] Goldschmidt B S, Rudy A M, Nowak C A, et al. Characterization of MgF2 thin films using optical tunneling photoacoustic spectroscopy[J]. Optics and Laser Technology, 2015, 73: 146-155.

[3] Chowdhury A, Kang D W, Sichanugrist P, et al. Performance improvement of amorphous silicon solar cell by SiOx∶H based multiple antireflection coatings[J]. Thin Solid Films, 2016, 616: 461-465.

[4] Zhang W T, Han P D, Lan A D, et al. Defect modes tuning of one-dimensional photonic crystals with lithium niobate and silver material defect[J]. Physica E, 2012, 44(4): 813-815.

[5] Chi F T, Zhang Q, Zhang L J, et al. Nanostructured magnesium fluoride antireflective films with ultra-high laser induced damage thresholds[J]. Materials Letters, 2015,150: 28-30.

[6] Matsuhisa K, Fujii M, Imakita K, et al. Photoluminescence from single silicon quantum dots excited via surface plasmon polaritons[J]. Journal of Luminescence, 2012,132(5): 1157-1159.

[7] Cui H T, Campbell P R, Green M A. Optimisation of the back surface reflector for textured polycrystalline Si thin film solar cells[J]. Energy Procedia, 2013, 33: 118-128.

[8] James T D, Scullion M G, Ashok P C, et al. Valve controlled fluorescence detection system for remote sensing application[J]. Microfluidics and Nanofluidics, 2011, 11(5): 529-536.

[9] Mercaldo L V, Usatii I, Bobeico E, et al. Optical performance of Ag-based back reflectors with different spacers in thin film Si solar cells[J]. Energy Procedia, 2015, 84: 221-227.

[10] Chen F Y, Yuan L, Johnston R L. Low-loss optical magnetic metamaterials on Ag-Au bimetallic fishnets[J]. Journal of Magnetism And Magnetic Materials, 2012, 324(17): 2625-2630.

[11] Tsai B S, Chiu H J, Chen T H, et al. Dual-wavelength electroluminescence from an n-ZnO/p-GaN heterojunction light emitting diode[J]. Applied Surface Science, 2015, 354: 74-78.

[12] Kotilainen M, Honkanen M, Mizohata K, et al. Influence of temperature-induced copper diffusion on degradation of selective chromium oxy-nitride solar absorber coatings[J]. Solar Energy Materials and Solar Cells, 2016, 145: 323-332.

[13] 徐朝鹏, 张文秀, 王永贞, 等. Pb掺杂对InI最小光学带隙和电导率影响的第一性原理研究[J]. 光学学报, 2015, 35(12): 1216001.

    Xu Zhaopeng, Zhang Wenxiu, Wang Yongzhen, et al. First principle study about the effect of Pb-doping on optical band gap and conductivity of InI[J]. Acta Optica Sinica, 2015, 35(12): 1216001.

[14] 崔红卫, 张富春, 邵婷婷. Sn掺杂ZnO电子结构与光学性质的第一性原理研究[J]. 光学学报, 2016, 36(7): 0716002.

    Cui Hongwei, Zhang Fuchun, Shao Tingting. First-principles study on electronic structure and optical properties of Sn-doped ZnO[J]. Acta Optica Sinica, 2016, 36(7): 0716002.

[15] Bloemer M J, Scalora M. Transmissive properties of Ag/MgF2 photonic band gaps[J]. Applied Physics Letters, 1998, 72(14): 1676-1678.

[16] Vidal-Valat G, Vidal J P, Zeyen C M E, et al. Neutron-diffraction study of magnesium fluoride single-crystals[J]. Acta Crystallographica Section B, 1979, 35(7): 1584-1590.

[17] Forti M D, Alonso P R, Gargano P H, et al. A DFT study of atomic structure and adhesion at the Fe(BCC)/Fe3O4 interfaces[J]. Surface Science, 2016, 647: 55-65.

[18] Zhao Z J, Li Z L, Cui Y R, et al. Importance of metal-oxide interfaces in heterogeneous catalysis: A combined DFT, microkinetic, and experimental study of water-gas shift on Au/MgO[J]. Journal of Catalysis, 2017, 345: 157-169.

[19] 史守华, 孙兆奇, 孙大明. Ag-MgF2复合纳米金属陶瓷薄膜的微结构及吸收光谱特性研究[J]. 光学学报, 2002, 22(5): 622-626.

    Shi Shouhua, Sun Zhaoqi, Sun Daming. Microstructure and absorption spectra of Ag-MgF2 nanocrystalline cermet film[J]. Acta Optica Sinica, 2002, 22(5): 622-626.

[20] 宗易昕, 夏建白, 武海斌. 介质/介质和金属/介质光子晶体的光子能带和光子态密度[J]. 激光与光电子学进展, 2016, 53(3): 031602.

    Zong Yixin, Xia Jianbai, Wu Haibin. Photonic band structure and state density of dielectric/dielectric and metal/dielectric photonic crystals[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031602.

王丽平, 杨建新, 韩培德. Ag扩散对Ag/MgF2薄膜界面结构和光学性能的影响[J]. 激光与光电子学进展, 2017, 54(6): 061601. Wang Liping, Yang Jianxin, Han Peide. Influence of Ag Diffusion on Structure and Optical Property of Ag/MgF2 Film Interface[J]. Laser & Optoelectronics Progress, 2017, 54(6): 061601.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!