激光生物学报, 2014, 23 (4): 289, 网络出版: 2015-07-07  

空化微流体在生物医学方面的应用

Cavitational Microfluidic for Applications in Biomedicine
作者单位
1 华南师范大学激光生命科学研究所教育部重点实验室, 广东 广州 510631
2 华南师范大学信息光电子科技学院, 广东 广州 510006
3 广州计量检测技术研究院, 广东 广州 510663
4 广州大学实验中心, 广东 广州 510006
5 华南师范大学先进光电子研究院光及电磁波中心, 广东 广州 510006
摘要
空化效应是发生在液体内部的一种极其复杂的流体物理现象, 能产生极高的中心能量密度, 并伴随发光、发热、冲击波、高速射流等极端物理现象, 它的存在能使一些极端的反应得以实现。空化效应发生时形成的空化微流体在破坏细胞形貌、微操控、微混合等方面有广泛地应用。本文综述了空化微流体及其产生的强烈冲击波在生物医学方面的应用, 包含空化微流体在破坏细胞形貌、微小元件的操控以及加快液体混合等三个方面。
Abstract
Cavitation effect, a very complex physical phenomenon inside the liquid, not only can produce extremely high core-energy density, but also is accompanied by some extreme physical phenomena such as light, heat, shock waves, and fast-moving liquid jets leading to some extreme reactions. The microfluidic formed by cavitation effect has wide applications in the destruction of the cell morphology, micromanipulation, micro mixing etc. In this paper, the cavitation microfluidic and strong shock wave in biomedical applications are reviewed, including destroy cell morphology, control minor components and accelerate liquid mixing.
参考文献

[1] 王金刚, 郭培全, 王西奎, 等. 空化效应在有机废水处理中的应用研究[J]. 化学进展, 2005, 17(13): 549-553.

    WANG Jingang, GUO Peiquan, WANG Xikui, et al. Research status of degradation and application of cavitation in organic wastewater treatment[J]. Progress in Chemistry, 2005, 17(13): 549-553.

[2] 管金发, 邓松圣, 雷飞东, 等. 空化水射流理论和应用研究[J]. 石油化工应用, 2010, 29(12): 15-19.

    GUAN Jinfa, DENG Songsheng, LEI Feidong, et al. Research on the theory and application of cavitation water jet[J]. Petrochemical Industry Application, 2010, 29(12): 15-19.

[3] 冯中营. 空化及其在杀菌中的应用[J]. 科学技术与工程, 2010, 10(5): 1208-1210.

    FENG Zhongying. Cavitation and its application on sterilization[J]. Science Technology and Engineering, 2010, 10(5): 1208-1210.

[4] 王希光, 顾培臣, 张洪喜, 等. 电脉冲和空化射流技术在热电厂冲灰回水管道上除垢应用[J]. 清洗世界, 2007, 23(12): 11-14.

    WANG Xiguang, GU Peichen, ZHANG Hongxi, et al. The empty cave shoots cleaning technique apply in the washing ash pipe of the hot power station[J]. Cleaning World, 2007, 23(12): 11-14.

[5] 王伟民, 武志林, 张永春, 等. 水力空化技术灭藻[C]. 第十三届世界湖泊大会, 2010, 828-832.

    WANG Weimin, WU Zhilin, ZHANG Yongchun, et al. Removal of algae by hydrodynamic cavitation technology[C]. 13th World Lake Conference Proceedings, 2010, 828-832.

[6] 王伟民. 应用水力空化技术灭杀富营养化水体中藻类的研究[D]. 扬州大学, 2009.

    WANG Weimin. Removal of algae in eutrophicated water by hydrodynamic cavitation[D]. Yangzhou University, 2009.

[7] 廖振方, 陈德淑, 邓晓刚, 等. 利用空化射流清洗湖泊[J]. 清洗世界, 2004, 20(4): 1-6.

    LIAO Zhenfang, CHEN Deshu, DENG Xiaogang, et al. Using cavitation jet flow in the cleaning of lakes[J]. Cleaning World, 2004, 20(4): 1-6.

[8] 王学杰, 李根生, 史怀忠, 等. 利用水力脉冲空化射流复合钻井技术提高钻速[J]. 石油学报, 2009, 30(1): 117-120.

    WANG Xuejie, LI Gensheng, SHI Huaizhong, et al. Improvement of penetration rate with hydraulic pulsating-cavitation jet compound drilling technology[J]. Acta Petrolei Sinica, 2009, 30(1): 117-120.

[9] 陈谦, 邹欣晔, 程建春. 超声波声孔效应中气泡动力学的研究[J]. 物理学报, 2006, 55(12): 6476-6481.

    CHEN Qian, ZOU Xinye, CHENG Jianchun. Investigation of bubble dynamics in ultrasonic sonoporation[J]. Acta Physica Sinica, 2006, 55(12): 6476-6481.

[10] QUINTO-SU P A, KUSS C, PREISER P R, et al. Red blood cell rheology using single controlled laser-induced cavitation bubbles[J]. Lab on a Chip, 2011, 11(4): 672-678.

[11] PRENTICE P, CUSCIERI A, DHOLAKIA K, et al. Membrane disruption by optically controlled microbubble cavitation[J]. Nature Physics, 2005, 1: 107-110.

[12] 任玉坤, 敖宏瑞, 顾建忠. 面向微系统的介电泳力微纳粒子操控研究[J]. 物理学报, 2009, 58(11): 7869-7877.

    REN Yukun, AO Hongrui, GU Jianzhong. Microparticles manipulation based on dielectrophoresis in microsys-tem[J]. Acta Physica Sinica, 2009, 58(11): 7869-7877.

[13] GASCOYNE P R C, VYKOUKAL J. Particle separation by dielectrophoresis[J].Electrophoresis, 2002, 23(13): 1973-1983.

[14] MARMOTTANT P, HILGENFELDT S. A bubble-driven microfluidic transport element for bioengineering [J]. PNAS, 2004, 101(26): 9523-9527.

[15] LEE K H, LEE J H, WON J M, et al. Micromanipulation using cavitational microstreaming generated by acoustically oscillating twin bubbles[J]. Sensors and Actuators A, 2012, 188: 442-449.

[16] STROOCK A D, DERTINGER S K W, AJDARI A, et al. Whitesides chaotic mixers for microchannels[J]. Science, 2002, 295(5555): 647-651.

[17] MAO Xiaole, WALDEISEN J R, HUANG T J. “Microfluidic drifting”-implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device[J]. Lab on a Chip , 2007, 7(10): 1260-1262.

[18] HELLMAN A N, RAU K R, YOON H H, et al. Laser-induced mixing in microfluidic channel[J]. Analytical Chemistry, 2007, 79(12): 4484-4492.

[19] LIU R H, LENIGK R, DRUYOR-SANCHEZ R L, et al. Hybridization enhancement using cavitation microstreaming[J]. Analytical Chemistry, 2003, 75(8): 1911-1917.

[20] AHMED D, MAO X, JULURI B K, et al. A fast microfluidic mixer based on acoustically driven side-wall-trapped microbubbles[J]. Microfluidics and Nanofluidics, 2009, 7(5): 727-731.

古颖龙, 王海燕, 吴羽, 姜恒和, 郑嘉鹏, 邢晓波, 朱德斌. 空化微流体在生物医学方面的应用[J]. 激光生物学报, 2014, 23(4): 289. GU Yinglong, WANG Haiyan, WU Yu, JIANG Henghe, ZHENG Jiapeng, XING Xiaobo, ZHU Debin. Cavitational Microfluidic for Applications in Biomedicine[J]. Acta Laser Biology Sinica, 2014, 23(4): 289.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!