红外与激光工程, 2018, 47 (2): 0225001, 网络出版: 2018-04-26   

3.11THz标准体雷达散射截面测量

Radar cross section measurement of standard targets at 3.11 THz
王茂榕 1,2,3,*钟凯 1,2刘楚 1,2徐德刚 1,2姚建铨 1,2
作者单位
1 天津大学 精密仪器与光电子工程学院 激光与光电子研究所, 天津 300072
2 光电信息技术教育部重点实验室(天津大学), 天津 300072
3 青岛科技大学 数理学院, 山东 青岛 266100
摘要
针对太赫兹近场散射特性测量特点, 基于CO2激光抽运的太赫兹激光器和双层独立转动平台搭建了一套高频段太赫兹雷达散射截面(RCS)测量系统。利用不锈钢光滑金属球体作为标准定标体验证了系统的可靠性, 测量结果与理论值误差小于3 dBsm, 系统的信噪比优于24 dB。首次利用该系统开展了3.11 THz频点处不同材料及涂覆层圆形金属平板及不同底面直径圆锥体RCS的测量。通过比较分析发现了表面阳极氧化和喷漆处理的航空铝及P304不锈钢与纯航空铝平板的RCS区别, 以及不同底面直径的圆锥体RCS差异, 为太赫兹频段复杂目标体RCS的研究奠定基础。
Abstract
Considering the terahertz near-field scattering characteristics, a high-frequency terahertz radar cross section(RCS) measurement system was presented based on a CO2 laser pumped terahertz laser and an independent double-deck rotation platform. The reliability of the system was verified by utilizing stainless steel smooth spheres as the standard calibration targets. The error between measurement result and the theoretical value was less than 3 dBsm and the signal-to-noise ratio is better than 24 dB. For the first time, RCS measurement of metal plates was performed with different materials and coatings, and metal cones with different bottom diameter, at a high frequency of 3.11 THz. The RCS difference of pure, anodized, painted aviation aluminum and P304 stainless steel plates, was demonstrated. The RCS of cones with different bottom diameters made of pure aviation aluminum plate was also compared. This work can lay the foundation for further study of the complex target RCS research in the terahertz band.
参考文献

[1] 解琪, 杨鸿儒, 李宏光, 等. 基于太赫兹时域光谱系统的爆炸物识别[J]. 光学 精密工程, 2016, 24(10): 2392-2399.

    Xie Qi, Yang Hongru, Li Hongguang, et al. Explosive identification based on terahertz time-domain spectral system[J]. Optics and Precision Engineering, 2016, 24(10): 2392-2399. (in Chinese)

[2] 潘武, 曾威, 张俊, 等. 堆叠型太赫兹通信透镜天线设计[J]. 光学 精密工程, 2017, 25(1): 65-72.

    Pan Wu, Zeng Wei, Zhang Jun, et al. Design of multilayer stacked terahertz communication lens antenna[J]. Optics and Precision Engineering, 2017, 25(1): 65-72. (in Chinese)

[3] 张学迁, 张慧芳, 田震, 等. 利用介质超材料控制太赫兹波的振幅和相位[J]. 红外与激光工程, 2016, 45(4): 0425004.

    Zhang Xueqian, Zhang Huifang, Tian Zhen, et al. Simultaneous control of terahertz amplitude and phase with dielectric metamaterials[J]. Infrared and Laser Engineering, 2016, 45(4): 0425004. (in Chinese)

[4] 鄂轶文, 黄媛媛, 徐新龙, 等. 太赫兹偏振测量系统及其应用[J]. 中国光学, 2017, 10(1): 98-113.

    E Yiwen, Huang Yuanyuan, Xu Xinlong, et al. Polarization sensitive terahertz measurements and applications [J]. Chinese Optics, 2017, 10(1): 98-113. (in Chinese)

[5] 许文忠, 钟凯, 梅嘉林, 等. 太赫兹波在沙尘中衰减特性[J]. 红外与激光工程, 2015, 44(2): 524-527.

    Xu Wenzhong, Zhong Kai, Mei Jialin, et al. THz wave attenuation characteristics in sand and dust [J]. Infrared and Laser Engineering, 2015, 44(2): 524-527. (in Chinese)

[6] 秦华, 黄永丹, 孙建东, 等. 二维电子气等离激元太赫兹波器件[J]. 中国光学, 2017, 10(1): 51-66.

    Qin Hua, Huang Yongdan, Sun Jiandong, et al. Terahertz-wave devices based on plasmons in two-dimensional electron gas [J]. Chinese Optics, 2017, 10(1): 51-66. (in Chinese)

[7] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005.

    Huang Peikang, Yin Hongcheng, Xu Xiaojian. Radar Target Characteristic[M]. Beijing: Electronic Industry Press, 2005.(in Chinese)

[8] Jansen C, Krumbholz N, Geise R, et al. 1-scaled radar cross section measurements with terahertz-spectroscopy up to 800 GHz[C]//3rd European Conference on Antennas and Propagation, 2009: 3645-3648.

[9] Gente R, Jansen C, Geise R, et al. Scaled bistatic radar cross section measurements of aircraft with a fiber-coupled THz time-domain spectrometer[J]. IEEE Transactions on Terahertz Science and Technolohy, 2012, 2(4): 424-431.

[10] Iwaszczuk K, Heiselberg H, Jepsen P U. Terahertz radar cross section measurements[J]. Optics Express, 2010, 18(25): 26399-26408.

[11] Goyette T M, Dickinson J C, Waldman J. Fully polarimetric W-band ISAR imagery of scale-model tactical targets using a 1.56-THz compact range [C]//Proceedings of SPIE, the International Society for Optical Engineering, 2001, 4382: 229-240.

[12] Lonnqvist A, Mallat J, Raisanen A V. Phase-hologram-based compact RCS test range at 310 GHz for scale models [J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(6): 2391-2397.

[13] Li Z, Cui T J, Zhong X J, et al. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas & Propagation Magazine, 2009, 51(1): 39-50.

[14] Jin Y Q, Xu F. Composite scattering from electric-large target over randomly rough surface in numerical approaches[C]//Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2010: 3545-3548.

[15] Li H Y, Li Q. Influence of gaussian beam on terahertz Radar cross section of a conducting sphere[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(1): 88-96.

[16] 江月松, 聂梦瑶, 张崇辉, 等. 粗糙表面涂覆目标的太赫兹波散射特性研究[J]. 物理学报, 2015(2): 90-96.

    Jiang Yuesong, Nie Mengyao, Zhang Chonghui, et al. Terahertz scattering property for the coated object of rough surface[J]. Acta Physica Sinica, 2015(2): 90-96. (in Chinese)

[17] 杨洋, 姚建铨, 宋玉坤, 等. 球型目标在不同波段的雷达散射截面[J]. 激光与红外, 2011, 41(5): 552-556.

    Yang Yang, Yao Jianquan, Song Yukun, et al. Radar scattering cross section in different wave band for spherical targets[J]. Laser and Infrared, 2011, 41(5): 552-556. (in Chinese)

[18] 梁达川, 魏明贵, 谷建强, 等. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究[J]. 物理学报, 2014, 63(21): 85-94.

    Liang Dachuan, Wei Minggui, Gu Jianqiang, et al. Broad-band time domain terahertz radar cross-section research in scale models [J]. Acta Physica Sinica, 2014, 63(21): 85-94. (in Chinese)

[19] 蒋彦雯, 邓彬, 王宏强, 等. 基于时域光谱系统的太赫兹圆柱RCS测量[J]. 红外与激光工程, 2014, 43(7): 2223-2227.

    Jiang Yanwen, Deng Bin, Wang Hongqiang, et al. RCS measurement of cylinders in terahertz band based on the time-domain spectroscopy system[J]. Infrared and Laser Engineering, 2014, 43(7): 2223-2227. (in Chinese)

[20] 樊长坤, 李琦, 周毅, 等. 四种粗糙度铝板的2.52太赫兹后向散射测量研究[J]. 激光与光电子学进展, 2016(11): 155-160.

    Fan Changkun, Li Qi, Zhou Yi, et al. Measurement investigation of 2.52 terahertz back scattering in aluminium plates with four kinds of roughness[J]. Laser & Optoelectronics Progress, 2016(11): 155-160. (in Chinese)

王茂榕, 钟凯, 刘楚, 徐德刚, 姚建铨. 3.11THz标准体雷达散射截面测量[J]. 红外与激光工程, 2018, 47(2): 0225001. Wang Maorong, Zhong Kai, Liu Chu, Xu Degang, Yao Jianquan. Radar cross section measurement of standard targets at 3.11 THz[J]. Infrared and Laser Engineering, 2018, 47(2): 0225001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!