红外与激光工程, 2019, 48 (11): 1105002, 网络出版: 2019-12-09   

级联Nd:GdVO4自拉曼1 309 nm激光性能研究

Study on the performance of cascaded Nd:GdVO4 self-Raman laser at 1 309 nm
作者单位
温州大学 激光与光电子技术研究所, 浙江 温州 325035
摘要
报道了基于半导体激光端面抽运的a切Nd:GdVO4晶体级联自拉曼激光的输出特性。利用Nd:GdVO4晶体的优异激光特性和较强的拉曼增益, 结合使用针对级联拉曼设计的宽带高反腔镜, 在声光Q开光调制下, 成功实现了基于882 cm-1频移的1 309 nm波长二阶斯托克斯激光输出。在10 W入射抽运功率和50 kHz重复频率下, 获得了平均输出功率1.48 W, 脉冲宽度5.3 ns的1 309 nm激光输出, 对应的二阶斯托克斯激光阈值和光光转换效率分别为5.9 W和14.8%。结果表明: 以Nd:GdVO4作为自拉曼晶体, 通过级联拉曼可实现高效二阶斯托克斯激光输出, 对丰富固体激光波长具有重要价值。
Abstract
The output characteristics of a-cut Nd:GdVO4 crystal cascaded self-Raman laser based on semiconductor laser end-pumping were reported. Making full use of the excellent laser characteristics and strong Raman gain of Nd:GdVO4 crystal, as well as using broadband high-reflection mirror designed for cascaded Raman operation, second order Stokes laser at 1 309 nm based on the Raman shift of 882 cm-1 was successfully achieved under the acousto-optic Q-switched modulation. Under the incident pump power of 10 W and the pulse repetition frequency of 50 kHz, a maximum average Raman laser output power of 1.48 W and a pulse width of 5.3 ns for 1 309 nm laser was obtained, corresponding the threshold and the conversion efficiency for second order Stokes generation were around 5.9 W and 14.8%, respectively. The results show that cascaded Nd:GdVO4 self-Raman also can achieve high-efficiency second-Stokes laser output, which is of great value to enrich the wavelength of solid-state laser.
参考文献

[1] Piper J A, Pask H M. Crystalline Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704.

[2] Zhang Fang, Wang Zhengping, Xu Xinguang. Anisotropy of stimulated Raman scattering in SrWO4 crystal[J]. Optics and Precision Engineering, 2014, 22(1): 39-43. (in Chinese)

[3] Duan Y, Zhu H, Zhang Y, et al. RbTiOPO4 cascaded Raman operation with multiple Raman frequency shifts derived by Q-switched Nd:YAlO3 laser[J]. Scientific Reports, 2016, 6: 33852.

[4] Wang Hui, Zhang Huifeng, Guo Tao. Dual-wavelength eye-safe laser based on Nd:GYSGG/YVO4 intracavity stimulated Raman conversion[J]. Infrared and Laser Engineering, 2015, 44(12): 3512-3516. (in Chinese)

[5] Zhu H, Duan Y, Zhang G, et al. Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite[J]. Optics Letters, 2009, 34(18): 2763-2765.

[6] Liu Z, Wang Q, Zhang X, et al. Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm[J]. Optics Letters, 2009, 34(14): 2183-2185.

[7] Duan Y, Zhu H, Wang H, et al. Comparison of 1.15 μm Nd:YAG\KTA Raman lasers with 234 and 671 cm-1 shifts[J]. Optics Express, 2016, 24(5): 5565-5571.

[8] Zhang Jing, Duan Yanmin, Zhang Dong, et al. Acousto-optic Q-switched intracavity Nd:YAG/RTP cascaded Raman laser[J]. Infrared and Laser Engineering, 2019, 48(6): 0606006. (in Chinese)

[9] Shen H B, Wang Q P, Zhang X Y, et al. Second-Stokes dual-wavelength operation at 1 321 and 1 325 nm ceramic Nd:YAG/BaWO4 Raman laser[J]. Optics Letters, 2012, 37(21): 4519-4521.

[10] Zhu H Y, Guo J H, Ruan X K, et al. Cascaded self-Raman laser emitting around 1.2-1.3 μm based on a c-cut Nd:YVO4 crystal[J]. IEEE Photonics Journal, 2017, 9(2): 1500807.

[11] Yu H H, Liu J H, Zhang H J, et al. Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer[J]. Laser & Photonics Reviews, 2015, 8(6): 847-864.

[12] Ding Xin, Zhao Cen, Jiang Pengbo, et al. High efficiency actively Q-switched Nd:YVO4 self-Raman laser under 914 nm in-band pumping[J]. Infrared and Laser Engineering, 2017, 46(10): 1005001. (in Chinese)

[13] Kaminskii A A, Bettinelli M, Dong J, et al. Nanosecond Nd3+:LuVO4 self-Raman laser[J]. Laser Physics Letters, 2010, 6(5): 374-379.

[14] Chen Y F. High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration[J]. Optics Letters, 2004, 29(16): 1915-1917.

[15] Chen Y F. Efficient 1 521 nm Nd:GdVO4 Raman laser[J]. Optics Letters, 2004, 29(22): 2632-2634.

[16] Duan Yanmin, Zhu Haiyong, Feng Zhengrong, et al. Laser diode end-pumped Nd:YVO4 self-Raman laser at 559 nm with sum-frequency mixing[J]. Chinese Journal of Lasers, 2013, 40(5): 9-12. (in Chinese)

[17] Lee A J, Lin J, Pask H M, Near-infrared and orange-red emission from a continuous-wave, second-Stokes self-Raman Nd:GdVO4 laser[J]. Optics Letters, 2010, 35(18): 3000-3002.

[18] Du C L, Guo Y Y, Yu Y Q, et al. Diode-end-pumped Q-switched composite YVO4/Nd:YVO4/YVO4 crystal self-Raman second-Stokes laser[J]. Laser Physics Letters, 2013, 10(5): 055802.

[19] Guo J, Zhu H Y, Chen S M, et al. Yellow, lime and green emission selectable by BBO angle tuning in Q-switched Nd:YVO4 self-Raman laser[J]. Laser Physics Letters, 2018, 15(7): 075803.

[20] Yu Xueli, Ding Shuanghong, Jia Haixu, et al. Numerical simulation of actively Q-switched intracavity sum-frequency Raman laser[J]. Infrared and Laser Engineering, 2017, 46(9): 0906001. (in Chinese)

张喜梅, 陈思梦, 施沈城, 周青青, 段延敏, 朱海永. 级联Nd:GdVO4自拉曼1 309 nm激光性能研究[J]. 红外与激光工程, 2019, 48(11): 1105002. Zhang Ximei, Chen Simeng, Shi Shencheng, Zhou Qingqing, Duan Yanmin, Zhu Haiyong. Study on the performance of cascaded Nd:GdVO4 self-Raman laser at 1 309 nm[J]. Infrared and Laser Engineering, 2019, 48(11): 1105002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!