红外与激光工程, 2019, 48 (1): 0106003, 网络出版: 2019-04-02   

全固态皮秒径向偏振激光器及其加工特性

All-solid-state picosecond radially polarized laser and its processing characteristics
作者单位
北京工业大学 激光工程研究院, 北京 100124
摘要
在自主研制的全固态皮秒激光器基础上, 腔外加入偏振转换元件输出皮秒径向偏振激光, 并对其进行侧泵Nd:YAG晶体放大, 最终得到中心波长1 064 nm、平均功率1.95 W、重复频率1 kHz、峰值功率1.77×108 W、光束质量2.95以及纯度92%的皮秒径向偏振激光器。用该激光器对0.5 mm厚不锈钢材料进行钻孔和刻槽实验, 并与同等加工工艺参数条件下皮秒线偏振激光器钻孔圆度和刻槽深度进行对比, 分析两种激光器对加工效果的影响。实验结果表明, 相比皮秒线偏振激光, 利用皮秒径向偏振激光进行加工, 钻孔圆度更好、刻槽深度更深且槽侧壁更为平坦。该结果为皮秒径向偏振激光器在材料加工领域的应用提供参考。
Abstract
An average power of 1.95 W picosecond radially polarized laser was obtained with 1 064 nm at 1 kHz, which based on an all-solid-state picosecond laser developed independently. The peak power of the radially polarized beam was up to 1.77×108 W and the beam quality was measured to be M2=2.95 with the pulse width 11 ps, corresponding to the beam purity of 92%. The radially polarized seed beam was obtained by adding the polarization conversion element outside the laser cavity. In addition, the modulation attenuator caused two different polarization lasers to output the same optical power and then enter the subsequent optical system; and a 0.5 mm thick stainless steel was drilled and grouted by using the obtained picosecond radially polarized laser and picosecond linearly polarized laser under the same processing parameters, respectively. The difference on the circularity of the holes and the depth of the grooves were compared with each other when it was processed by the two polarized picosecond lasers. The results show that the picosecond radially polarization laser has better drilling roundness, deeper notch depth and flatter sidewall of the groove compared to the picosecond linear polarization laser processing results. This results provides a reference for the application of picosecond radial polarization laser in the field of material processing.
参考文献

[1] Zhan Qiwen. Cylindrical vector beams: from mathematical concepts to applications [J]. Journal of Systems Science & Complexity, 2009, 27(5): 899-910.

[2] 魏通达, 张运海, 唐玉国. 偏振态、相位和振幅对受激辐射损耗中损耗光焦斑的影响[J]. 光学 精密工程, 2014, 22(5): 1157-1564.

    Wei Tongda, Zhang Yunhai, Tang Yuguo. Effect of polarization, phase and amplitude on depletion focus spot in STED [J]. Optics and Precision Engineering, 2014, 22(5):1157-1564. (in Chinese)

[3] 王思聪, 李向平. 紧聚焦对称矢量光场波前调控及应用[J]. 中国光学, 2016, 9(2): 185-202.

    Wang Sicong, Li Xiangping. Wavefront manipulation of tightly focused cylindrical vector beams and its applications [J]. Chinese Optics, 2016, 9(2): 185-202. (in Chinese)

[4] 詹翔空, 李政勇, 张伊, 等. 基于 Stokes 矢量测量与干涉法的径向偏振光束重建[J]. 红外与激光工程, 2017, 46(4): 0427002.

    Zhan Xiangkong, Li Zhengyong, Zhang Yin, et al. Radially polarized beam restructuring based on Stokes-vector measurement and interferometry [J]. Infrared and Laser Engineering, 2017, 46(4): 0427002. (in Chinese)

[5] Li Manman, Yan Shaohui, Yao Baoli, et al. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization [J]. Physics Letters A, 2016, 380(1-2): 311-315.

[6] 李平雪,辛承聪,高健, 等. 皮秒激光加工研究进展与展望[J]. 激光与红外, 2018, 48(10): 1195-1203.

    Li Pingxue, Xin Chenggao, Gao Jian, et al. Research progress and development of picosecond laser processing [J]. Laser & Infrared, 2018, 48(10): 1195-1203. (in Chinese)

[7] Trtica M S, Gakovic B M, Radak B B, 等. 纳秒、皮秒和飞秒激光脉冲对材料表面的改性[J]. 光学 精密工程, 2011, 19(2): 221-227.

    Trtica M S, Gakovic B M, Radak B B, et al. Material surface modification by ns, ps and fs laser pulses [J]. Optics and Precision Engineering, 2011, 19(2): 221-227. (in Chinese)

[8] 金方圆, 陈波, 鄂书林, 等.高频率皮秒激光微加工石英衬底铝膜效率[J]. 红外与激光工程, 2015, 44(11): 3239-3243.

    Jin Fangyuan, Chen Bo, E Shulin, et al. Ablation rate of high frequency picosecond laser micromachining quartz substrated Al film[J]. Infrared and Laser Engineering, 2015, 44(11): 3239-3243. (in Chinese)

[9] 李晨, Stoian Razvan,程光华. 超短脉冲激光诱导周期性表面结构[J]. 中国光学, 2018, 11(1): 1-17.

    Li Chen, Stoian Razvan, Chen Guanghua. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. (in Chinese)

[10] 武伟, 陈桂明, 赵娜, 等. 激光在高速钢表面加工沟槽表面织构的实验研究[J]. 红外与激光工程, 2016, 45(2):0206008.

    Wu Wei, Chen Guiming, Zhao Na, et al. Experimental study on the groove surface texture processed by laser on the surface of high-speed steel[J]. Infrared and Laser Engineering, 2016, 45(2): 0206008. (in Chinese)

[11] Chang Chengcheng, Chen Xudong, Pu Jixiong. High-energy nanosecond radially polarized beam output from Nd:YAG ampliiers [J]. Optical Review, 2017, 24(2): 188-192.

[12] 李政委, 陈檬, 李港. 侧面抽运Nd:YAG锁模径向偏振光 [J]. 中国激光, 2014, 41(1): 0102006.

    Li Zhengwei, Chen Meng, Li Gang. Side-pumped Nd:YAG mode-locked radially polarized laser[J]. Chinese Journal of Lasers, 2014, 41(1): 0102006. (in Chinese)

[13] Beresna Martynas, Gecevi■ius Mindaugas, Kazansky Peter G, et al. Radially polarized optical vortex conve-rter created by femtosecond laser nanostructuring of glass [J]. Applied Physics Letters, 2011, 98(20): 20110101-20110103.

[14] Mikheev M, Idiatulin S. Influence of light polarization on laser destruction [C]//SPIE, 1998, 3573: 36-38.

[15] Jiang Jing, Chen Meng, Bai Zhenxu, et al. Influence of polarization on the hole formation with picosecond laser [J]. Optical Review, 2013, 20(6): 496-499.

[16] Niziev G V, Nesterov V A. Influence of beam polarization on laser cutting efficiency [J]. Journal of Physics D Applied Physics, 1999, 32: 1455-1461.

彭红攀, 杨策, 卢尚, 陈檬. 全固态皮秒径向偏振激光器及其加工特性[J]. 红外与激光工程, 2019, 48(1): 0106003. Peng Hongpan, Yang Ce, Lu Shang, Chen Meng. All-solid-state picosecond radially polarized laser and its processing characteristics[J]. Infrared and Laser Engineering, 2019, 48(1): 0106003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!